Steam reforming is the most usual method of hydrogen production due to its high production efficiency and technological maturity. The use of ethanol for this purpose is an interesting option because it is a renewable and environmentally friendly fuel. The objective of this article is to present the physical-chemical, thermodynamic, and exergetic analysis of a steam reformer of ethanol, in order to produce 0.7Nm3h of hydrogen as feedstock of a 1kW PEMFC. The global reaction of ethanol is considered. Superheated ethanol reacts with steam at high temperatures producing hydrogen and carbon dioxide, depending strongly on the thermodynamic conditions of reforming, as well as on the technical features of the reformer system and catalysts. The thermodynamic analysis shows the feasibility of this reaction in temperatures about 206°C. Below this temperature, the reaction trends to the reactants. The advance degree increases with temperature and decreases with pressure. Optimal temperatures range between 600 and 700°C. However, when the temperature attains 700°C, the reaction stability occurs, that is, the hydrogen production attains the limit. For temperatures above 700°C, the heat use is very high, involving high costs of production due to the higher volume of fuel or electricity used. The optimal pressure is 1atm., e.g., at atmospheric pressure. The exergetic analysis shows that the lower irreversibility is attained for lower pressures. However, the temperature changes do not affect significantly the irreversibilities. This analysis shows that the best thermodynamic conditions for steam reforming of ethanol are the same conditions suggested in the physical-chemical analysis.

1.
Renewable Fuels Association
, Ethanol and Fuel Cells: Converging Paths of Opportunity, Available at: www.ethanolrfa.org/rfa fuel cell white-paper.pdfwww.ethanolrfa.org/rfa fuel cell white-paper.pdf, 2004.
2.
Ioannides
,
T.
, 2001, “
Thermodynamic analysis of ethanol processors for fuel cell applications
,”
J. Power Sources
0378-7753,
92
, pp.
17
25
.
3.
Van Wylen
,
G. J.
,
Sonntag
,
R. E.
, and
Borgnakke
,
C.
, 1998,
Fundamentos da Termodinâmica
,
fifth ed.
, São Paulo, Brazil,
Edgar Blücher Ltd.
, (in portuguese).
4.
Silveira
,
J. L.
,
Sosa
,
M. I.
,
Reis
,
J. A.
,
Martinelli
,
L. C.
, Jr.
,
Silva
,
M. E.
, and
Souza
,
A. C. C.
, 2003, “
Análise exergética do reformador de etanol: escolha do nível de pressão e da temperatura de reforma em função do índice de irreversibilidade
,” Technical Report of project, in association with CEMIG - UNESP - UNICAMP, Guaratinguetá, Brazil (in portuguese).
5.
Castellan
,
G.
, 1986, Fundamentos da Físico/Química, Rio de Janeiro, Brazil: Editora LTC. p.
529
(in portuguese).
6.
Vasudeva
,
K.
,
Mitra
,
N.
,
Umasankar
,
P.
, and
Dhingra
,
S. C.
, 1996, “
Steam reforming of ethanol for hydrogen production: Thermodynamic analysis
,”
Int. J. Hydrogen Energy
0360-3199,
21
, pp.
13
18
.
You do not currently have access to this content.