In a situation where fossil energy resources globally run short and the greenhouse effect increases, the interest in new technologies of energy conversion to reduce the demand of primary energy and emission of pollutants grows. The use of high temperature fuel cells like solid oxide fuel cells (SOFCs), especially in combination with gas turbines (GTs), promises remarkable room for improvement in the areas mentioned, compared to other state-of-the-art technologies. But design and handling of such complex plants require efficient control strategies to promote safe and reliable operation. The development of powerful control algorithms is based on an exact knowledge of the operating behavior, which can be obtained using dynamic system models. In this paper a nonlinear model with bulk parameters and 19 dynamic states is presented; the main assumptions and the underlying equations are given. The simulated system consists of a compressor, a SOFC, a turbine, a recuperator, an ejector with a diffusor, a reformer, and a load. Additionally, from the nonlinear model a linear one in state-space representation is derived at nominal conditions. The results of both models are compared. The agreement of the dynamic behavior and of steady state final values is satisfactory. Thus in future studies, methods of linear control theory could be used with the linear model to develop efficient control strategies.

1.
Veyo
,
S E.
.
,
Shockling
,
L. A.
,
Dederer
,
J. T.
,
Gillett
,
J. E.
, and
Lundberg
,
W. L.
, 2000, “
Tubular Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Power Systems—Status
,” ASME Paper No. 2000-GT-550.
2.
Veyo
,
S. E.
,
Vora
,
S. D.
,
Litzinger
,
K. P.
, and
Lundberg
,
W. L.
, 2002, “
Status of Pressurized SOFC/Gas Turbine Power System Development at Siemens Westinghouse
,” ASME Paper No. GT-2002-30670.
3.
Lundberg
,
W. L.
,
Veyo
,
S. E.
, and
Moeckel
,
M. D.
, 2003, “
A High-Efficiency Solid Oxide Fuel Cell Hybrid Power System Using the Mercury 50 Advanced Turbine Systems Gas Turbine
,”
J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
51
58
.
4.
Agnew
,
G. D.
,
Townsend
,
J.
,
Moritz
,
R. R.
,
Bozzolo
,
M.
,
Berenyi
,
S.
, and
Duge
,
R.
, 2004, “
Progress in the Development of a Low Cost 1MW SOFC Hybrid
,” ASME Paper No. GT2004-53350.
5.
Veyo
,
S. E.
,
Lundberg
,
W. L.
,
Vora
,
S. D.
, and
Litzinger
,
K. P.
, 2003, “
Tubular SOFC Hybrid Power System Status
,” ASME Paper No. GT2003-38943.
6.
Costamagna
,
P.
,
Magistri
,
L.
, and
Massardo
,
A. F.
, 2001, “
Design and Part-Load Performance of a Hybrid System Based on a Solid Oxide Fuel Cell Reactor and a Micro Gas Turbine
,”
J. Power Sources
0378-7753,
96
, pp.
352
368
.
7.
Song
,
T. W.
,
Sohn
,
J. L.
,
Kim
,
J. H.
,
Kim
,
T. S.
,
Ro
,
S. T.
, and
Suzuki
,
K.
, 2004, “
Parametric Studies for a Performance Analysis of a SOFC/MGT Hybrid Power System Based on a Quasi-2D Model
,” ASME Paper No. GT2004-53304.
8.
Campanari
,
S.
, 2001, “
Thermodynamic Model and Parametric Analysis of a Tubular SOFC Module
,”
J. Power Sources
0378-7753,
92
, pp.
26
34
.
9.
Magistri
,
L.
,
Trasino
,
F.
,
Costamagna
,
P.
,
Ferrari
,
M. L.
,
Traverso
,
A.
, and
Massardo
,
A. F.
, 2004, “
Transient Analysis of Solid Oxide Fuel Cell Hybrids Part A-C
,” ASME Paper No. GT2004-53842, -53716, -53845.
10.
Hildebrandt
,
A.
,
Genrup
,
M.
, and
Assadi
,
M.
, 2004, “
Steady-State and Transient Compressor Surge Behavior Within a SOFC-GT-Hybrid System
,” ASME Paper No. GT2004-53892.
11.
Kurzweil
,
P.
, 2003,
Brennstoffzellentechnik - Grundlagen, Komponenten, Systeme, Anwendungen
,
Vieweg
, Wiesbaden, Germany, Chap. 8.1.
12.
Klotz
,
R.
, 1988,
Ein Beitrag zur digitalen Simulation von Turboluftstrahltriebwerken mit Hilfe vereinfachter Modelle
, Dissertation, Technische Universität Carolo-Wilhelmina zu Braunschweig, Germany, Chap. 3.3.
13.
Kurzke
,
J.
, 2001,
GasTurb9 - A Program to Calculate Design and Off-Design Performance of Gas Turbines
, Germany, http://www.gasturb.dehttp://www.gasturb.de
14.
Pukrushpan
,
J. T.
,
Stefanopoulou
,
A. G.
, and
Peng
,
H.
, 2004,
Control of Fuel Cell Power Systems - Principles, Modeling, Analysis and Feedback Design
,
Springer
, London, UK, Chap. 2.1.
15.
Utriainen
,
E.
, and
Sundén
,
B.
, 2001, “
Evaluation of the Cross Corrugated and Some Other Candidate Heat Transfer Surfaces for Microturbine Recuperators
,” Contributed by the IGTI Heat Transfer Committee of the ASME for publication in the ASME J. of Engineering for Gas Turbines and Power (final revision received by the ASME Headquarters Sept. 2001).
16.
Fischer
,
K.
, 2002,
Mathematische Modellierung des stationären Verhaltens einer röhrenförmigen Hochtemperaturbrennstoffzelle
, Diplomarbeit, Universität Hannover.
This content is only available via PDF.
You do not currently have access to this content.