Abstract

Safety concerns, particularly regarding Li-ion battery issues such as thermal runaway (TR), present significant challenges in developing safer electric vehicles (EVs). To address the complexities of predicting TR, this study introduces a probabilistic approach to assessing the risk of thermal and electrical abuse in EV batteries. Based on the concept of a safe operating area, a safety window probability (SWP) was introduced to quantify the likelihood of the battery operating outside safe temperature and voltage ranges. To achieve this, uncertainty quantification was applied to a mathematical model of an EV's battery thermal management system (BTMS), which includes powertrain, electrical, and thermal components. The model demonstrated close agreement with high-fidelity simulations for thermal and electrical performance. An autoregressive strategy and Latin hypercube sampling were then employed to transform the deterministic BTMS model into a stochastic model, enabling an uncertainty assessment of the battery performance variables. The output data generated by this stochastic model were used to estimate an empirical joint probability density function for temperature and voltage, which ultimately allowed the calculation of the SWP. Results revealed significant differences in cell temperature variance between passive and active cooling conditions, with passive cooling showing a widening variance over time, signaling potential thermal safety risks. This proposed approach offers valuable insights for enhancing BTMS efficiency, contributing to the overall improvement of EV safety.

References

1.
Huang
,
G.
,
Zhao
,
P.
, and
Zhang
,
G.
,
2022
, “
Real-Time Battery Thermal Management for Electric Vehicles Based on Deep Reinforcement Learning
,”
IEEE Internet Things J.
,
9
(
15
), pp.
14060
14072
.
2.
Feng
,
X.
,
Zheng
,
S.
,
Ren
,
D.
,
He
,
X.
,
Wang
,
L.
,
Cui
,
H.
,
Liu
,
X.
, et al
,
2019
, “
Investigating the Thermal Runaway Mechanisms of Lithium-ion Batteries Based on Thermal Analysis Database
,”
Appl. Energy
,
246
, pp.
53
64
.
3.
Shahid
,
S.
, and
Agelin-Chaab
,
M.
,
2022
, “
A Review of Thermal Runaway Prevention and Mitigation Strategies for Lithium-Ion Batteries
,”
Energy Convers. Manage.: X
,
16
, p.
100310
.
4.
Vendra
,
C. M. R.
,
Shelke
,
A. V.
,
Buston
,
J. E. H.
,
Gill
,
J.
,
Howard
,
D.
,
Read
,
E.
,
Abaza
,
A.
,
Cooper
,
B.
, and
Wen
,
J. X.
,
2022
, “
Numerical and Experimental Characterisation of High Energy Density 21700 Lithium-ion Battery Fires
,”
Process Saf. Environ. Prot.
,
160
, pp.
153
165
.
5.
Feng
,
X.
,
Ouyang
,
M.
,
Liu
,
X.
,
Lu
,
L.
,
Xia
,
Y.
, and
He
,
X.
,
2018
, “
Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review
,”
Energy Storage Mater.
,
10
, pp.
246
267
.
6.
Zou
,
B.
,
Zhang
,
L.
,
Xue
,
X.
,
Tan
,
R.
,
Jiang
,
P.
,
Ma
,
B.
,
Song
,
Z.
, and
Hua
,
W.
,
2023
, “
A Review on the Fault and Defect Diagnosis of Lithium-Ion Battery for Electric Vehicles
,”
Energies (Basel)
,
16
(
14
), p.
5507
.
7.
Ding
,
Y.
,
Zheng
,
Y.
,
Li
,
S.
,
Dong
,
T.
,
Gao
,
Z.
,
Zhang
,
T.
,
Li
,
W.
,
Rao
,
S.
,
Xiao
,
Y.
,
Chen
,
Y.
, and
Zhang
,
Y.
,
2023
, “
A Review of Battery Thermal Management Methods for Electric Vehicles
,”
J. Electrochem. Energy Convers. Storage
,
20
(
2
), p.
021002
.
8.
Yayathi
,
S.
,
Walker
,
W.
,
Doughty
,
D.
, and
Ardebili
,
H.
,
2016
, “
Energy Distributions Exhibited During Thermal Runaway of Commercial Lithium Ion Batteries Used for Human Spaceflight Applications
,”
J. Power Sources
,
329
, pp.
197
206
.
9.
Fu
,
Y.
,
Lu
,
S.
,
Shi
,
L.
,
Cheng
,
X.
, and
Zhang
,
H.
,
2018
, “
Ignition and Combustion Characteristics of Lithium Ion Batteries Under Low Atmospheric Pressure
,”
Energy
,
161
, pp.
38
45
.
10.
Duh
,
Y. S.
,
Liu
,
X.
,
Jiang
,
X.
,
Kao
,
C. S.
,
Gong
,
L.
, and
Shi
,
R.
,
2020
, “
Thermal Kinetics on Exothermic Reactions of a Commercial LiCoO2 18650 Lithium-Ion Battery and Its Components Used in Electric Vehicles: A Review
,”
J. Energy Storage
,
30
, p.
101422
.
11.
Zhang
,
P.
,
Lu
,
J.
,
Yang
,
K.
,
Chen
,
H.
, and
Huang
,
Y.
,
2023
, “
A 3D Simulation Model of Thermal Runaway in Li-Ion Batteries Coupled Particles Ejection and Jet Flow
,”
J. Power Sources
,
580
, p.
233357
.
12.
Sharp
,
M.
,
Darst
,
J. J.
,
Hughes
,
P.
,
Billman
,
J.
,
Pham
,
M.
,
Petrushenko
,
D.
,
Heenan
,
T. M. M.
, et al
,
2022
, “
Thermal Runaway of Li-Ion Cells: How Internal Dynamics, Mass Ejection, and Heat Vary With Cell Geometry and Abuse Type
,”
J. Electrochem. Soc.
,
169
(
2
), p.
020526
.
13.
Walker
,
W. Q.
,
Cooper
,
K.
,
Hughes
,
P.
,
Doemling
,
I.
,
Akhnoukh
,
M.
,
Taylor
,
S.
,
Darst
,
J.
, et al
,
2022
, “
The Effect of Cell Geometry and Trigger Method on the Risks Associated With Thermal Runaway of Lithium-Ion Batteries
,”
J. Power Sources
,
524
, p.
230645
.
14.
ISO
,
2009
,
Electrically Propelled Road Vehicles—Safety Specifications—Part 2: Vehicle Operational Safety Means and Protection Against Failures, ISO 6469-2
,
ISO
,
Geneva, Switzerland
.
15.
Kong
,
L.
,
Li
,
C.
,
Jiang
,
J.
, and
Pecht
,
M. G.
,
2018
, “
LI-ion Battery Fire Hazards and Safety Strategies
,”
Energies (Basel)
,
11
(
9
),
2191
.
16.
NHTSA
, “Battery Safety Initiative.” https://www.nhtsa.gov/battery-safety-initiative, Accessed November 30, 2023.
17.
Ali
,
H. M.
,
2023
, “
Thermal Management Systems for Batteries in Electric Vehicles: A Recent Review
,”
Energy Rep.
,
9
, pp.
5545
5564
.
18.
Rezvanizaniani
,
S. M.
,
Liu
,
Z.
,
Chen
,
Y.
, and
Lee
,
J.
,
2014
, “
Review and Recent Advances in Battery Health Monitoring and Prognostics Technologies for Electric Vehicle (EV) Safety and Mobility
,”
J. Power Sources
,
256
, pp.
110
124
.
19.
Wen
,
J.
,
Li
,
Z.
,
Zhang
,
H.
, and
Zhang
,
C.
,
2024
, “
Internal Temperature Estimation of Lithium-Ion Battery Based on Improved Electro-Thermal Coupling Model and ANFIS
,”
ASME J. Electrochem. Energy Convers. Storage
,
21
(
4
), p.
041010
.
20.
Abdar
,
M.
,
Pourpanah
,
F.
,
Hussain
,
S.
,
Rezazadegan
,
D.
,
Liu
,
L.
,
Ghavamzadeh
,
M.
,
Fieguth
,
P.
, et al
,
2021
, “
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
,”
Inf. Fusion
,
76
, pp.
243
297
.
21.
Boafo
,
E.
, and
Gabbar
,
H. A.
,
2018
, “
Stochastic Uncertainty Quantification for Safety Verification Applications in Nuclear Power Plants
,”
Ann. Nucl. Energy
,
113
, pp.
399
408
.
22.
Lu
,
C.
, and
Wu
,
Z.
,
2022
, “
Uncertainty Quantification of the 1-D SFR Thermal Stratification Model via the Latin Hypercube Sampling Monte Carlo Method
,”
Nucl. Technol.
,
208
(
1
), pp.
37
48
.
23.
Shields
,
M. D.
, and
Zhang
,
J.
,
2016
, “
The Generalization of Latin Hypercube Sampling
,”
Reliab. Eng. Syst. Saf.
,
148
, pp.
96
108
.
24.
Mallarapu
,
A.
,
Çaldichoury
,
I.
,
L’Eplattenier
,
P.
,
Sunderlin
,
N.
, and
Santhanagopalan
,
S.
,
2025
, “
Coupled Multiphysics Modeling of Lithium-Ion Batteries for Automotive Crashworthiness Applications
,”
ASME J. Electrochem. Energy Convers. Storage
,
22
(
3
), p.
031003
.
25.
Li
,
B.
,
Jones
,
C. M.
, and
Tomar
,
V.
,
2021
, “
Overdischarge Detection and Prevention With Temperature Monitoring of Li-Ion Batteries and Linear Regression-Based Machine Learning
,”
J. Electrochem. Energy Convers. Storage
,
18
(
4
), p.
040905
.
26.
Chen
,
J.
,
Li
,
K.
, and
Yang
,
S.
,
2022
, “
Electric Vehicle Fire Risk Assessment Based on WBS-RBS and Fuzzy BN Coupling
,”
Mathematics
,
10
(
20
), p.
3799
.
27.
Zhang
,
W.
,
Yuan
,
J.
,
Huang
,
J.
, and
Xie
,
Y.
,
2024
, “
Uncertainty Assessment Method for Thermal Runaway Propagation of Lithium-Ion Battery Pack
,”
Appl. Therm. Eng.
,
238
, p.
121946
.
28.
Han
,
U.
,
Kang
,
H.
,
Song
,
J.
,
Oh
,
J.
, and
Lee
,
H.
,
2021
, “
Development of Dynamic Battery Thermal Model Integrated With Driving Cycles for EV Applications
,”
Energy Convers. Manage.
,
250
, p.
114882
.
29.
Fan
,
Y.
,
Zhan
,
D.
,
Tan
,
X.
,
Lyu
,
P.
, and
Rao
,
J.
,
2021
, “
Optimization of Cooling Strategies for an Electric Vehicle in High-Temperature Environment
,”
Appl. Therm. Eng.
,
195
, p.
117088
.
30.
Yu
,
Y.
,
Jiang
,
J.
,
Min
,
H.
,
Zhang
,
Z.
,
Sun
,
W.
, and
Cao
,
Q.
,
2023
, “
Integrated Energy and Thermal Management Strategy for Extended Range Electric Vehicle Based on Battery Temperature and State-of-Charge Global Planning
,”
Energy Convers. Manage.
,
288
, p.
117154
.
31.
Li
,
W.
,
Cui
,
H.
,
Nemeth
,
T.
,
Jansen
,
J.
,
Ünlübayir
,
C.
,
Wei
,
Z.
,
Zhang
,
L.
, et al
,
2021
, “
Deep Reinforcement Learning-Based Energy Management of Hybrid Battery Systems in Electric Vehicles
,”
J. Energy Storage
,
36
, p.
102355
.
32.
Deng
,
L.
,
Li
,
S.
,
Tang
,
X.
,
Yang
,
K.
, and
Lin
,
X.
,
2023
, “
Battery Thermal- and Cabin Comfort-Aware Collaborative Energy Management for Plug-In Fuel Cell Electric Vehicles Based on the Soft Actor-Critic Algorithm
,”
Energy Convers. Manage.
,
283
, p.
116889
.
33.
Xu
,
B.
, and
Arjmandzadeh
,
Z.
,
2023
, “
Parametric Study on Thermal Management System for the Range of Full (Tesla Model S)/Compact-Size (Tesla Model 3) Electric Vehicles
,”
Energy Convers. Manage.
,
278
, p.
116753
.
34.
Wu
,
Y.
,
Huang
,
Z.
,
Li
,
D.
,
Li
,
H.
,
Peng
,
J.
,
Guerrero
,
J. M.
, and
Song
,
Z.
,
2024
, “
Integrated Battery Thermal and Energy Management for Electric Vehicles With Hybrid Energy Storage System: A Hierarchical Approach
,”
Energy Convers. Manage.
,
317
, p.
118853
.
35.
Koenig
,
B. C.
,
Zhao
,
P.
, and
Deng
,
S.
,
2025
, “
Comprehensive Thermal-Kinetic Uncertainty Quantification of Lithium-Ion Battery Thermal Runaway via Bayesian Chemical Reaction Neural Networks
,”
Chem. Eng. J.
,
507
, p.
160402
.
36.
Shon
,
J. W.
,
Choi
,
D.
,
Lee
,
H.
, and
Son
,
S. Y.
,
2024
, “
Proposal and Verification of the Application of an Expert Inference Method to Present the Probability of Lithium-Ion Battery Thermal Runaway Risk
,”
Energies
,
17
(
11
), p.
2566
.
37.
Jie
,
D.
,
Baohui
,
C.
,
Jiazheng
,
L.
,
Tiannian
,
Z.
, and
Chuanping
,
W.
,
2024
, “
Thermal Runaway and Combustion Characteristics, Risk and Hazard Evaluation of Lithium-Iron Phosphate Battery Under Different Thermal Runaway Triggering Modes
,”
Appl. Energy
,
368
, p.
123451
.
38.
Sarkar
,
S.
,
Swamy
,
D.
,
Amin
,
M. T.
,
El-Halwagi
,
M.
, and
Khan
,
F.
,
2024
, “
Safer Operating Areas (SOA) of Cylindrical Lithium-Ion Battery—A Probabilistic Approach
,”
Process Saf. Environ. Prot.
,
190
, pp.
708
725
.
39.
Li
,
D.
,
Deng
,
J.
,
Zhang
,
Z.
,
Wang
,
Z.
,
Zhou
,
L.
, and
Liu
,
P.
,
2023
, “
Battery Safety Risk Assessment in Real-World Electric Vehicles Based on Abnormal Internal Resistance Using Proposed Robust Estimation Method and Hybrid Neural Networks
,”
IEEE Trans. Power Electron.
,
38
(
6
), pp.
7661
7673
.
40.
Xiong
,
R.
,
Ma
,
S.
,
Li
,
H.
,
Sun
,
F.
, and
Li
,
J.
, “
Toward a Safer Battery Management System: A Critical Review on Diagnosis and Prognosis of Battery Short Circuit
,”
Iscience
,
23
(
4
), p.
101010
.
41.
Xu
,
K.
,
2014
, “
Electrolytes and Interphases in Li-Ion Batteries and Beyond
,”
Chem. Rev.
,
114
(
23
), pp.
11503
11618
.
42.
Li
,
M.
,
Lu
,
J.
,
Chen
,
Z.
, and
Amine
,
K.
,
2018
, “
30 Years of Lithium-Ion Batteries
,”
Adv. Mater.
,
30
(
33
), p.
1800561
.
43.
Wei
,
Z.
,
Xu
,
J.
, and
Halim
,
D.
,
2017
, “
HEV Power Management Control Strategy for Urban Driving
,”
Appl. Energy
,
194
, pp.
705
714
.
44.
Liu
,
Y.
, and
Zhang
,
J.
,
2020
, “
Self-Adapting J-Type Air-Based Battery Thermal Management System via Model Predictive Control
,”
Appl. Energy
,
263
, p.
114640
.
45.
Christensen
,
P. A.
,
Anderson
,
P. A.
,
Harper
,
G. D. J.
,
Lambert
,
S. M.
,
Mrozik
,
W.
,
Rajaeifar
,
M. A.
,
Wise
,
M. S.
, and
Heidrich
,
O.
,
2021
, “
Risk Management Over the Life Cycle of Lithium-Ion Batteries in Electric Vehicles
,”
Renewable Sustainable Energy Rev.
,
148
, p.
111240
.
46.
Fan
,
Y.
,
Zuo
,
X.
,
Zhan
,
D.
,
Zhao
,
J.
,
Zhang
,
G.
,
Wang
,
H.
,
Wang
,
K.
,
Yang
,
S.
, and
Tan
,
X.
,
2023
, “
A Novel Control Strategy for Active Battery Thermal Management Systems Based on Dynamic Programming and a Genetic Algorithm
,”
Appl. Therm. Eng.
,
233
, p.
121113
.
47.
Saha
,
B.
, and
Goebel
,
K.
,
2007
, “Battery Data Set, NASA Ames Prognostics Data Repository, CA, USA,” http://ti.arc.nasa.gov/project/prognostic-datarepository. Accessed October 28, 2021.
48.
Sulaiman
,
M. H.
, and
Mustaffa
,
Z.
,
2024
, “
State of Charge Estimation for Electric Vehicles Using Random Forest
,”
Green Energy Intell Transport
,
3
(
5
), p.
100177
.
49.
Steinstraeter
,
M.
,
Buberger
,
J.
, and
Trifonov
,
D.
,
2020
, “
Battery and Heating Data in Real Driving Cycles
,”
IEEE DataPort
.
50.
Kim
,
J. W.
,
Won
,
H. I.
,
Park
,
D. Y.
,
Kim
,
I. J.
,
Lee
,
J. W.
,
Kim
,
K. D.
,
Noh
,
Y.
, and
Jang
,
J. S.
,
2023
, “
Study on Stochastic and Autoregressive Time Series Forecasting for Hydrogen Refueling Station
,”
IEEE Access
,
11
, pp.
141598
141609
.
51.
Jing
,
P.
,
Su
,
Y.
,
Jin
,
X.
, and
Zhang
,
C.
,
2019
, “
High-Order Temporal Correlation Model Learning for Time-Series Prediction
,”
IEEE Trans. Cybern.
,
49
(
6
), pp.
2385
2397
.
52.
Jamali Jahromi
,
A.
,
Mohammadi
,
M.
,
Afrasiabi
,
S.
,
Afrasiabi
,
M.
, and
Aghaei
,
J.
,
2022
, “
Probability Density Function Forecasting of Residential Electric Vehicles Charging Profile
,”
Appl. Energy
,
323
, p.
119616
.
53.
Liang
,
Y.
,
Wu
,
C.
,
Zhang
,
M.
,
Ji
,
X.
,
Shen
,
Y.
,
He
,
J.
, and
Zhang
,
Z.
,
2022
, “
Statistical Modelling of the Joint Probability Density Function of Air Density and Wind Speed for Wind Resource Assessment: A Case Study From China
,”
Energy Convers. Manage.
,
268
,
116054
.
54.
Huria
,
T.
,
Ceraolo
,
M.
,
Gazzarri
,
J.
, and
Jackey
,
R.
,
2012
, “
High Fidelity Electrical Model With Thermal Dependence for Characterization and Simulation of High Power Lithium Battery Cells
,”
2012 IEEE International Electric Vehicle Conference, IEVC 2012
,
Greenville, SC
,
Mar. 4–8
, pp.
1
8
.
55.
Tan
,
M.
,
Gan
,
Y.
,
Liang
,
J.
,
He
,
L.
,
Li
,
Y.
,
Song
,
S.
, and
Shi
,
Y.
,
2020
, “
Effect of Initial Temperature on Electrochemical and Thermal Characteristics of a Lithium-Ion Battery During Charging Process
,”
Appl. Therm. Eng.
,
177
,
115500
.
56.
Wenwei
,
W.
,
Fenghao
,
Z.
, and
Yiding
,
L.
,
2021
, “
Research on Influencing Factors About Temperature of Short Circuit Area in Lithium-Ion Power Battery
,”
ASME J. Electrochem. Energy Convers. Storage
,
18
(
2
),
020910
.
57.
Suresh
,
C.
,
Awasthi
,
A.
,
Kumar
,
B.
,
Im
,
S.-K.
, and
Jeon
,
Y.
,
2025
, “
Advances in Battery Thermal Management for Electric Vehicles: A Comprehensive Review of Hybrid PCM-Metal Foam and Immersion Cooling Technologies
,”
Renewable Sustainable Energy Rev.
,
208
, p.
115021
.
58.
Mousavi
,
S.
,
Zadehkabir
,
A.
,
Siavashi
,
M.
, and
Yang
,
X.
,
2023
, “
An Improved Hybrid Thermal Management System for Prismatic Li-Ion Batteries Integrated With Mini-Channel and Phase Change Materials
,”
Appl. Energy
,
334
, p.
120643
.
59.
Gokul Raj
,
K.
,
Nikhil Srinivas
,
T.
,
Jeswanth
,
M. G.
, and
Mohana Sundaram
,
N.
,
2024
, “
A Smart and Efficient Cooling System Design for High-Performance Electric Vehicle Battery Packs
,”
IOP Conference Series: Earth and Environmental Science
,
Online
,
Feb. 16–17
,
Institute of Physics
.
60.
Finegan
,
D. P.
,
Zhu
,
J.
,
Feng
,
X.
,
Keyser
,
M.
,
Ulmefors
,
M.
,
Li
,
W.
,
Bazant
,
M. Z.
, and
Cooper
,
S. J.
,
2021
, “
The Application of Data-Driven Methods and Physics-Based Learning for Improving Battery Safety
,”
Joule
,
5
(
2
), pp.
316
329
.
61.
Deng
,
T.
,
Ran
,
Y.
,
Yin
,
Y.
, and
Liu
,
P.
,
2020
, “
Multi-Objective Optimization Design of Thermal Management System for Lithium-Ion Battery Pack Based on Non-Dominated Sorting Genetic Algorithm II
,”
Appl. Therm. Eng.
,
164
,
114394
.
62.
Valdenegro-Toro
,
M.
, and
Mori
,
D. S.
,
2022
, “
A Deeper Look Into Aleatoric and Epistemic Uncertainty Disentanglement
,”
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
,
New Orleans, LA
,
June 19–20
,
IEEE Computer Society
, pp.
1508
1516
.
63.
Hüllermeier
,
E.
, and
Waegeman
,
W.
,
2021
, “
Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods
,”
Mach. Learn.
,
110
(
3
), pp.
457
506
.
64.
Ballester-Ripoll
,
R.
, and
Leonelli
,
M.
,
2022
, “
Computing Sobol Indices in Probabilistic Graphical Models
,”
Reliab. Eng. Syst. Saf.
,
225
,
108573
.
You do not currently have access to this content.