Abstract

High-temperature solid oxide cells and stacks are increasingly viewed as critical elements for a promising approach to address the intermittency of renewable energy sources, such as wind or solar. Used as electrolyzers, such stacks can harness excess power generated at peak periods, which often do not coincide with peak demand, by producing hydrogen for short- or long-term storage. Used as fuel cell systems, the stored hydrogen can be used to generate clean energy during periods of low renewable generation. The possibility of use as a reversible system further increases the flexibility to deal with the inherent and large variability of renewable sources, as well as the overall economic viability. The power tracking required—for both fuel cell and electrolyzer modes—can lead to thermal fatigue and short lifespans, a challenge that is more acute if used for operation in the reversible mode, due to the significant differences in the thermal profiles of the two configurations. We propose control techniques to develop high-performance controllers for thermal control of the solid oxide stacks, under large variations in the operating conditions. The challenges faced, particularly with respect to actuation and its limitations, differ in the two configurations necessitating a form of gain scheduling in fuel cells and reliance on artificial saturation levels in electrolyzers.

References

1.
Dunn
,
B.
,
Kamath
,
H.
, and
Tarascon
,
J. M.
,
2011
, “
Electrical Energy Storage for the Grid: A Battery of Choices
,”
Science
,
334
(
6058
), pp.
928
935
.
2.
Hemmes
,
K.
,
Guerrero
,
J. M.
, and
Zhelev
,
T.
,
2012
, “
Highly Efficient Distributed Generation and High-Capacity Energy Storage
,”
Chem. Eng. Process.: Process Intensif.
,
51
, pp.
18
31
.
3.
Dell
,
R. M.
, and
Rand
,
D. A. J.
,
2001
, “
Energy Storage—A Key Technology for Global Energy Sustainability
,”
J. Power Sources
,
100
(
1–2
), pp.
2
17
.
4.
Lindley
,
D.
,
2010
, “
The Energy Storage Problem
,”
Nature
,
463
(
7277
), pp.
18
20
.
5.
Baker
,
J.
,
2008
, “
New Technology and Possible Advances in Energy Storage
,”
Energy Policy
,
36
(
12
), pp.
4368
4373
.
6.
Gyuk
,
I.
,
Johnson
,
M.
,
Vetrano
,
J.
,
Lynn
,
K.
,
Parks
,
W.
,
Handa
,
R.
,
Kannberg
,
L.
,
Hearne
,
S.
,
Waldrip
,
K.
, and
Braccio
,
R.
,
2013
, “Grid Energy Storage,” Technical Report U.S. Department of Energy.
7.
Yang
,
Z. G.
,
Zhang
,
J.
,
Kintner-Meyer
,
M. C. W.
,
Lu
,
X.
,
Choi
,
D.
,
Lemmon
,
J. P.
, and
Liu
,
J.
,
2011
, “
Electrochemical Energy Storage for Green Grid
,”
Chem. Rev.
,
111
(
5
), pp.
3577
3613
.
8.
Nakajo
,
A.
,
Stiller
,
C.
,
Härkegård
,
G.
, and
Bolland
,
O.
,
2006
, “
Modeling of Thermal Stresses and Probability of Survival of Tubular SOFC
,”
J. Power Sources
,
158
(
1
), pp.
287
294
.
9.
Nakajo
,
A.
,
Wuillemin
,
Z.
,
Van Herle
,
J.
, and
Favrat
,
D.
,
2009
, “
Simulation of Thermal Stresses in Anode-Supported Solid Oxide Fuel Cell Stacks. Part I: Probability of Failure of the Cells
,”
J. Power Sources
,
193
(
1
), p.
12
.
10.
Faes
,
A.
,
Nakajo
,
A.
,
Hessler-Wyser
,
A.
,
Dubois
,
D.
,
Brisse
,
A.
,
Modena
,
S.
, and
Van Herle
,
J.
,
2009
, “
RedOx Study of Anode-Supported Solid Oxide Fuel Cell
,”
J. Power Sources
,
193
(
1
), pp.
55
64
.
11.
Nakajo
,
A.
,
Wuillemin
,
Z.
,
Van Herle
,
J.
, and
Favrat
,
D.
,
2009
, “
Simulation of Thermal Stresses in Anode-Supported Solid Oxide Fuel Cell Stacks. Part II: Loss of Gas-Tightness, Electrical Contact and Thermal Buckling
,”
J. Power Sources
,
193
(
1
), p.
10
.
12.
Xiao
,
G.
,
Sun
,
A.
,
Liu
,
H.
,
Ni
,
M.
, and
Xu
,
H.
,
2023
, “
Thermal Management of Reversible Solid Oxide Cells in the Dynamic Mode Switching
,”
Appl. Energy
,
331
, p.
120383
.
13.
Skafte
,
T. L.
,
Babaie Rizvandi
,
O.
,
Lyck Smitshuysen
,
A.
,
Frandsen
,
H. L.
,
Thorvald Høgh
,
J. V.
,
Hauch
,
A.
,
Knudsen Kær
,
S.
, et al
,
2022
, “
Electrothermally Balanced Operation of Solid Oxide Electrolysis Cells
,”
J. Power Sources
,
523
, p.
231040
.
14.
Sun
,
X.
,
Liu
,
Y.
,
Hendriksen
,
P. V.
, and
Chen
,
M.
,
2021
, “
An Operation Strategy for Mitigating the Degradation of Solid Oxide Electrolysis Cells for Syngas Production
,”
J. Power Sources
,
506
.
15.
Hauch
,
A.
,
Marchese
,
M.
,
Lanzini
,
A.
, and
Graves
,
C.
,
2018
, “
Re-Activation of Degraded Nickel Cermet Anodes—Nano-Particle Formation via Reverse Current Pulses
,”
J. Power Sources
,
377
, pp.
110
120
.
16.
Wang
,
Y.
,
Li
,
W.
,
Ma
,
L.
,
Li
,
W.
, and
Liu
,
X.
,
2020
, “
Degradation of Solid Oxide Electrolysis Cells: Phenomena, Mechanisms, and Emerging Mitigation Strategies—A Review
,”
J. Mater. Sci. Technol.
,
55
, pp.
35
55
.
17.
Königshofer
,
B.
,
Höber
,
M.
,
Nusev
,
G.
,
Boškoski
,
P.
,
Juričić
,
D.
,
Margaritis
,
N.
,
Hochenauer
,
C.
, and
Subotić
,
V.
,
2023
, “
Towards Strategies to Mitigate Degradation and Regenerate Performance of a Solid Oxide Electrolyzer During Co-Electrolysis Operation
,”
J. Power Sources
,
556
, p.
232404
.
18.
Chen
,
K.
, and
Jiang
,
S. P.
,
2020
, “
Surface Segregation in Solid Oxide Cell Oxygen Electrodes: Phenomena, Mitigation Strategies and Electrochemical Properties
,”
Electrochem. Energy Rev.
,
3
(
4
), pp.
730
765
.
19.
Zhou
,
L.
,
Mason
,
J. H.
,
Li
,
W.
, and
Liu
,
X.
,
2020
, “
Comprehensive Review of Chromium Deposition and Poisoning of Solid Oxide Fuel Cells (SOFCs) Cathode Materials
,”
Renew. Sustain. Energy Rev.
,
134
, p.
110320
.
20.
Sun
,
A.
,
Shuai
,
W.
,
Zheng
,
N.
,
Han
,
Y.
,
Xiao
,
G.
,
Ni
,
M.
, and
Xu
,
H.
,
2022
, “
Self-Adaptive Heat Management of Solid Oxide Electrolyzer Cell Under Fluctuating Power Supply
,”
Energy Convers. Manage.
,
271
.
21.
Sun
,
Y.
,
Hu
,
X.
,
Gao
,
J.
,
Han
,
Y.
,
Sun
,
A.
,
Zheng
,
N.
,
Shuai
,
W.
, et al
,
2022
, “
Solid Oxide Electrolysis Cell Under Real Fluctuating Power Supply With a Focus on Thermal Stress Analysis
,”
Energy
,
261
(
A
).
22.
Mueller
,
F.
,
Jabbari
,
F.
,
Gaynor
,
R.
, and
Brouwer
,
J.
,
2007
, “
Novel Solid Oxide Fuel Cell System Controller for Rapid Load Following
,”
J. Power Sources
,
172
(
1
), pp.
308
323
.
23.
Mueller
,
F.
,
Tarroja
,
B.
,
Maclay
,
J.
,
Jabbari
,
F.
,
Brouwer
,
J.
, and
Samuelsen
,
S.
,
2008
, “
Design, Simulation and Control of a 100 Megawatt Class Solid Oxide Fuel Cell Gas Turbine Hybrid System
,”
ASME Sixth International Conference on Fuel Cell Science, Engineering and Technology
,
Denver, CO
,
June 16–18
.
24.
Murshed
,
A. M.
,
Huang
,
B.
, and
Nandakumar
,
K.
,
2010
, “
Estimation and Control of Solid Oxide Fuel Cell System
,”
Comput. Chem. Eng.
,
34
(
1
), pp.
96
111
.
25.
Mueller
,
F.
,
Jabbari
,
F.
,
Brouwer
,
J.
,
Roberts
,
R.
,
Junker
,
T.
, and
Ghezel-Ayagh
,
H.
,
2007
, “
Control Design for a Bottoming Solid Oxide Fuel Cell Gas Turbine Hybrid System
,”
ASME J. Fuel Cell Sci. Technol.
,
4
(
3
), pp.
221
230
.
26.
Stiller
,
C.
,
Thorud
,
B.
,
Bolland
,
O.
,
Kandepu
,
R.
, and
Imsland
,
L.
,
2006
, “
Control Strategy for a Solid Oxide Fuel Cell and Gas Turbine Hybrid System
,”
J. Power Sources
,
158
(
1
), pp.
303
315
.
27.
Tsai
,
A.
,
Banta
,
L.
,
Tucker
,
D.
, and
Gemmen
,
R.
,
2010
, “
Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant
,”
ASME J. Fuel Cell Sci. Technol.
,
7
(
4
), p.
041008
.
28.
Fardadi
,
M.
,
McLarty
,
D. F.
, and
Jabbari
,
F.
,
2013
, “
Actuator Limitations in Spatial Temperature Control of SOFC
,”
ASME J. Fuel Cell Sci. Technol.
,
10
(
3
).
29.
Fardadi
,
M.
,
Mueller
,
F.
, and
Jabbari
,
F.
,
2010
, “
Feedback Control of Solid Oxide Fuel Cell Spatial Temperature Variation
,”
J. Power Sources
,
195
(
13
), pp.
4222
4233
.
30.
Fardadi
,
M.
,
McLarty
,
D. F.
,
Brouwer
,
J.
, and
Jabbari
,
F.
,
2014
, “
Enhanced Performance of Counter Flow SOFC With Partial Internal Reformation
,”
Int. J. Hydrogen Energy
,
39
(
34
), pp.
19753
19766
.
31.
Fardadi
,
M.
,
McLarty
,
D. F.
, and
Jabbari
,
F.
,
2013
, “
Controlling Spatial Temperature Variation in a Rapid Load Following SOFC
,”
ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
,
Minneapolis, MN
,
July 14–19
.
32.
Fardadi
,
M.
,
McLarty
,
D. F.
, and
Jabbari
,
F.
,
2016
, “
Investigation of Thermal Control for Different SOFC Flow Geometries
,”
Appl. Energy
,
178
, pp.
43
55
.
33.
Mueller
,
F.
,
Fardadi
,
M.
,
Shaffer
,
B.
,
Brouwer
,
J.
, and
Jabbari
,
F.
,
2010
, “
Transient Performance of Integrated SOFC System Including Spatial Temperature Control
,”
Proceedings of the ASME Eighth International Conference on Fuel Cell Science, Engineering, and Technology, Vol 2
,
Brooklyn, NY
,
June 14–16
, pp.
237
247
.
34.
Mottaghizadeh
,
P.
,
Fardadi
,
M.
,
Jabbari
,
F.
, and
Brouwer
,
J.
,
2020
, “
Thermal Management of a Reversible Solid Oxide System for Long-Term Renewable Energy Storage
,”
ASME International Mechanical Engineering Congress and Exposition
,
Virtual, Online
,
Nov. 16–19
.
35.
Mueller
,
F.
,
Gaynor
,
R.
,
Auld
,
A. E.
,
Brouwer
,
J.
,
Jabbari
,
F.
, and
Samuelsen
,
G. S.
,
2008
, “
Synergistic Integration of a Gas Turbine and Solid Oxide Fuel Cell for Improved Transient Capability
,”
J. Power Sources
,
176
(
1
), pp.
229
239
.
36.
Mueller
,
F.
,
Jabbari
,
F.
, and
Brouwer
,
J.
,
2009
, “
On the Intrinsic Transient Capability and Limitations of Solid Oxide Fuel Cell Systems
,”
J. Power Sources
,
187
(
2
), pp.
452
460
.
37.
Yang
,
J.
,
Li
,
X.
,
Mou
,
H.-G.
, and
Jian
,
L.
,
2009
, “
Predictive Control of Solid Oxide Fuel Cell Based on an Improved Takagi–Sugeno Fuzzy Model
,”
J. Power Sources
,
193
(
2
), pp.
699
705
.
38.
Reineh
,
M. S.
,
Fardadi
,
M.
, and
Jabbari
,
F.
,
2017
, “
Thermal Control of SOFC: An Anti-Windup Approach for Maximizing Usable Power
,”
IEEE Conference on Control Technology and Applications (CCTA)
,
Maui, HI
,
Aug. 27–30
.
39.
Reineh
,
M. S.
, and
Jabbari
,
F.
,
2018
, “
Enhanced Power Generation in SOFCs Using Artificial Limits on Actuator Control Signals
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
1
), p.
011002
.
40.
Sajjadi-Kia
,
S.
, and
Jabbari
,
F.
,
2011
, “
Multi-Stage Anti-Windup Compensation for Open-Loop Stable Plants
,”
IEEE Trans. Automat. Contr.
,
56
(
9
), pp.
2166
2172
.
41.
Iwasaki
,
T.
, and
Skelton
,
R. E.
,
1994
, “
All Controllers for the General H-Infinity Control Problem—LMI Existence Conditions and State-Space Formula
,”
Automatica
,
30
(
8
), pp.
1307
1317
.
42.
Zhou
,
K.
, and
Doyle
,
J. C.
,
1998
,
Essentials of Robust Control
,
Prentice Hall
.
43.
Boyd S
,
G. L.
,
Feron
,
E.
, and
Balakrishnan
,
V.
,
1994
,
Linear Matrix Inequalities in System and Control Theory
,
SIAM Publications Library
.
44.
Gahinet
,
P.
, and
Apkarian
,
P.
,
1994
, “
A Linear Matrix Inequality Approach to H-Infinity Control
,”
J. Robust Nonlinear Control
,
4
(
4
), pp.
421
448
.
45.
Scherer
,
C.
,
Gahinet
,
P.
, and
Chilali
,
M.
,
1997
, “
Multiobjective Output-Feedback Control via LMI Optimization
,”
IEEE Trans. Automat. Contr.
,
42
(
7
), pp.
896
911
.
46.
Skelton
,
R. E.
,
Iwasaki
,
T.
, and
Grigoriadis
,
K.
,
1998
,
A Unified Algebraic Approach to Linear Control Design
,
Taylor and Francis
,
London
.
You do not currently have access to this content.