Abstract

With the wide application of lithium batteries (LIBs) in electrified transportation and smart grids, especially in the pure electric vehicle industry, the accurate health maintenance monitoring of LIBs has emerged as critical to safe battery operation. Although many data-driven methods with state of health (SOH) estimation for LIBs have been proposed, the problems of industrial application and computational cost still need to be improved further. In contrast, this article carried out a low-complexity SOH estimation method for LIBs. Specifically, the seven health indicators are extracted firstly to characterize battery health status from voltage, current, temperature, and other data that can be obtained online. Then, the optimized Gaussian process regression (GPR) algorithm is proposed with proper computational cost. Ultimately, by combining a multi-indirect features extraction and optimized GPR algorithm, the online SOH estimation for LIBs was established and verified with NASA experiment data. The experimental results show that the maximum MAPE of SOH estimation from the proposed method is 1.4496 and the minimum MAPE only reaches 0.5635. More importantly, the optimized GPR for SOH estimation can achieve a maximum 65.37% improvement under multiple evaluation criteria compared to traditional GPR. The method proposed in this article is helpful for realizing online SOH estimation in battery management systems.

References

1.
Pang
,
H.
,
Chen
,
K.
,
Geng
,
Y.
,
Wu
,
L.
,
Wang
,
F.
, and
Liu
,
J.
,
2024
, “
Accurate Capacity and Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Improved Particle Swarm Optimization and Particle Filter
,”
Energy
,
293
, p.
130555
.
2.
Gelb
,
J.
,
Finegan
,
D.
,
McNeil
,
M.
,
Brett
,
D.
, and
Shearing
,
P.
,
2017
, “
A 4D Framework for Probing Structure-Property Relationships in Lithium-Ion Batteries
,”
Microsc. Microanal.
,
23
(
S1
), pp.
216
217
.
3.
Wu
,
L.
,
Liu
,
K.
,
Liu
,
J.
, and
Pang
,
H.
,
2023
, “
Evaluating the Heat Generation Characteristics of Cylindrical Lithium-Ion Battery Considering the Discharge Rates and N/P Ratio
,”
J. Energy Storage
,
64
, p.
107182
.
4.
Zhao
,
E.
,
Wang
,
H.
,
Yin
,
W.
,
He
,
L.
,
Ke
,
Y.
,
Wang
,
F.
, and
Zhao
,
J.
,
2022
, “
Spatiotemporal-Scale Neutron Studies on Lithium-Ion Batteries and Beyond
,”
Appl. Phys. Rev.
,
121
(
11
), p.
110501
.
5.
Qin
,
M.
,
Zeng
,
Z.
,
Cheng
,
S.
, and
Xie
,
J.
,
2023
, “
Challenges and Strategies of Formulating Low-Temperature Electrolytes in Lithium-ion Batteries
,”
Interdiscip. Mater.
,
2
(
2
), pp.
308
336
.
6.
Zhao
,
S.
,
He
,
D.
,
Wu
,
T.
,
Wang
,
L.
, and
Yu
,
H.
,
2022
, “
Ultrastable Orthorhombic Na2TiSiO5 Anode for Lithium-Ion Battery
,”
Adv. Energy Mater.
,
12
(
6
), p.
2102709
.
7.
Wu
,
L.
,
Lyu
,
Z.
,
Huang
,
Z.
,
Zhang
,
C.
, and
Wei
,
C.
,
2023
, “
Physics-Based Battery SOC Estimation Methods: Recent Advances and Future Perspectives
,”
J. Energy Chem.
,
89
, pp.
27
40
.
8.
Pang
,
H.
,
Wu
,
L.
,
Liu
,
J.
,
Liu
,
X.
, and
Liu
,
K.
,
2023
, “
Physics-Informed Neural Network Approach for Heat Generation Rate Estimation of Lithium-Ion Battery Under Various Driving Conditions
,”
J. Energy Chem.
,
78
, pp.
1
12
.
9.
Lin
,
C.
,
Tuo
,
X.
,
Wu
,
L.
,
Zhang
,
G.
, and
Zeng
,
X.
,
2024
, “
Accurate Capacity Prediction and Evaluation With Advanced SSA-CNN-BiLSTM Framework for Lithium-Ion Batteries
,”
Batteries
,
10
(
3
), p.
71
.
10.
Weddle
,
P. J.
,
Kim
,
S.
,
Chen
,
B. R.
,
Yi
,
Z.
,
Gasper
,
P.
,
Colclasure
,
A. M.
,
Smith
,
K.
,
Gering
,
K. L.
,
Tanim
,
T. R.
, and
Dufek
,
E. J.
,
2023
, “
Battery State-of-Health Diagnostics During Fast Cycling Using Physics-Informed Deep-Learning
,”
J. Power Sources
,
585
, p.
233582
.
11.
Chun
,
H.
,
Kim
,
J.
,
Kim
,
M.
,
Lee
,
J.
,
Lee
,
T.
, and
Han
,
S.
,
2022
, “
Capacity Estimation of Lithium-Ion Batteries for Various Aging States Through Knowledge Transfer
,”
IEEE Trans. Transp. Electrif.
,
8
(
2
), pp.
1758
1768
.
12.
Hosseininasab
,
S.
,
Lin
,
C.
,
Pischinger
,
S.
,
Stapelbroek
,
M.
, and
Vagnoni
,
G.
,
2022
, “
State-of-Health Estimation of Lithium-Ion Batteries for Electrified Vehicles Using a Reduced-Order Electrochemical Model
,”
J. Energy Storage
,
52
, p.
104684
.
13.
Liu
,
B.
,
Tang
,
X.
, and
Gao
,
F.
,
2020
, “
Joint Estimation of Battery State-of-Charge and State-of-Health Based on a Simplified Pseudo-Two-Dimensional Model
,”
Electrochim. Acta
,
344
, p.
136098
.
14.
Vennam
,
G.
,
Authors
,
A.
, and
Sahoo
,
A.
,
2023
, “
A Dynamic SOH-Coupled Lithium-Ion Cell Model for State and Parameter Estimation
,”
IEEE Trans. Energy Convers.
,
38
(
2
), pp.
1186
1196
.
15.
Yang
,
S.
,
Zhang
,
C.
,
Jiang
,
J.
,
Zhang
,
W.
,
Zhang
,
L.
, and
Wang
,
Y.
,
2021
, “
Review on State-of-Health of Lithium-Ion Batteries: Characterizations, Estimations and Applications
,”
J. Cleaner Prod.
,
314
, p.
128015
.
16.
Vichard
,
L.
,
Ravey
,
A.
,
Venet
,
P.
,
Harel
,
F.
,
Pelissier
,
S.
, and
Hissel
,
D.
,
2021
, “
A Method to Estimate Battery SOH Indicators Based on Vehicle Operating Data Only
,”
Energy
,
225
, p.
120235
.
17.
Niu
,
B.
,
Li
,
L.
,
Xu
,
C.
, and
Yu
,
F.
,
2021
, “
Study of SOH Estimation of EMU Battery Based on Improved Particle Filter
,”
2021 40th Chinese Control Conference (CCC)
,
Shanghai, China
,
July 26–28
, pp.
5816
5821
.
18.
Wu
,
T.
,
Liu
,
S.
,
Wang
,
Z.
, and
Huang
,
Y.
,
2022
, “
SOC and SOH Joint Estimation of Lithium-ion Battery Based on Improved Particle Filter Algorithm
,”
J. Electr. Eng. Technol.
,
17
(
1
), pp.
307
317
.
19.
Kurucan
,
M.
,
Özbaltan
,
M.
,
Yetgin
,
Z.
, and
Alkaya
,
A.
,
2024
, “
Applications of Artificial Neural Network-Based Battery Management Systems: A Literature Review
,”
Renewable Sustainable Energy Rev.
,
192
, p.
114262
.
20.
Klass
,
V.
,
Behm
,
M.
, and
Lindbergh
,
G.
,
2014
, “
A Support Vector Machine-Based State-of-Health Estimation Method for Lithium-Ion Batteries Under Electric Vehicle Operation
,”
J. Power Sources
,
270
, pp.
262
272
.
21.
Yang
,
D.
,
Zhang
,
X.
,
Pan
,
R.
,
Wang
,
Y.
, and
Chen
,
Z.
,
2018
, “
A Novel Gaussian Process Regression Model for State-of-Health Estimation of Lithium-Ion Battery Using Charging Curve
,”
J. Power Sources
,
384
, pp.
387
395
.
22.
Wen
,
J.
,
Chen
,
X.
,
Li
,
X.
, and
Li
,
Y.
,
2022
, “
SOH Prediction of Lithium Battery Based on IC Curve Feature and BP Neural Network
,”
Energy
,
261
, p.
125234
.
23.
Xu
,
H.
,
Wu
,
L.
,
Xiong
,
S.
,
Li
,
W.
,
Garg
,
A.
, and
Gao
,
L.
,
2023
, “
An Improved CNN-LSTM Model-Based State-of-Health Estimation Approach for Lithium-Ion Batteries
,”
Energy
,
276
, p.
127585
.
24.
Nuhic
,
A.
,
Terzimehic
,
T.
,
Soczka-Guth
,
T.
,
Buchholz
,
M.
, and
Dietmayer
,
K.
,
2013
, “
Health Diagnosis and Remaining Useful Life Prognostics of Lithium-Ion Batteries Using Data-Driven Methods
,”
J. Power Sources
,
239
, pp.
680
688
.
25.
Sun
,
S.
,
Lin
,
Q.
,
Li
,
H.
,
Zhan
,
Y.
, and
Dai
,
Y.
,
2022
, “
Simultaneous Estimation of SOH and SOC of Batteries Based on SVM
,”
2022 4th International Conference on Smart Power & Internet Energy Systems (SPIES)
,
Beijing, China
,
Dec. 9–12
, pp.
1934
1938
.
26.
Wang
,
Z.
,
Ma
,
J.
, and
Zhang
,
L.
,
2017
, “
State-of-Health Estimation for Lithium-Ion Batteries Based on the Multi-Island Genetic Algorithm and the Gaussian Process Regression
,”
IEEE Access
,
5
, pp.
21286
21295
.
27.
Hu
,
X.
,
Che
,
Y.
,
Lin
,
X.
, and
Onori
,
S.
,
2021
, “
Battery Health Prediction Using Fusion-Based Feature Selection and Machine Learning
,”
IEEE Trans. Transp. Electrif.
,
7
(
2
), pp.
382
398
.
28.
Xiao
,
F.
,
Li
,
C.
,
Fan
,
Y.
,
Yang
,
G.
, and
Tang
,
X.
,
2021
, “
State of Charge Estimation for Lithium-Ion Battery Based on Gaussian Process Regression With Deep Recurrent Kernel
,”
Int. J. Electr. Power & Energy Syst.
,
124
, p.
106369
.
29.
Deng
,
Z.
,
Hu
,
X.
,
Li
,
P.
,
Lin
,
X.
, and
Bian
,
X.
,
2021
, “
Data-Driven Battery State of Health Estimation Based on Random Partial Charging Data
,”
IEEE Trans. Power Electron.
,
37
(
5
), pp.
5021
5031
.
30.
Zhao
,
J.
,
Xuebin
,
L.
,
Daiwei
,
Y.
,
Zhang
,
J.
, and
Zhang
,
W.
,
2023
, “
Lithium-Ison Battery State of Health Estimation Using Meta-Heuristic Optimization and Gaussian Process Regression
,”
J. Energy Storage
,
58
, p.
106319
.
31.
Zhou
,
W.
,
Lu
,
Q.
, and
Zheng
,
Y.
,
2022
, “
Review on the Selection of Health Indicator for Lithium-Ion Batteries
,”
Machines
,
10
(
7
), p.
512
.
32.
Oji
,
T.
,
Zhou
,
Y.
,
Ci
,
S.
,
Kang
,
F.
,
Chen
,
X.
, and
Liu
,
X.
,
2021
, “
Data-Driven Methods for Battery SOH Estimation: Survey and a Critical Analysis
,”
IEEE Access
,
9
, pp.
126903
126916
.
33.
Saha
,
B.
, and
Goebel
,
K.
,
2008
,
“Battery Data Set,” NASA Ames Prognostics Data Repository
,
NASA Ames Research Center
,
Moffett Field, CA, USA
.
34.
Rodgers
,
J. L.
, and
Nicewander
,
W. A.
,
1988
, “
Thirteen Ways to Look at the Correlation Coefficient
,”
Am Stat.
,
42
(
1
), pp.
59
66
.
35.
Ren
,
O.
,
Boussaidi
,
M. A.
,
Voytsekhovsky
,
D.
,
Ihara
,
M.
, and
Manzhos
,
S.
,
2022
, “
Random Sampling High Dimensional Model Representation Gaussian Process Regression (RS-HDMR-GPR) for Representing Multidimensional Functions With Machine-Learned Lower-Dimensional Terms Allowing Insight With a General Method
,”
Comput. Phys. Commun.
,
271
, p.
108220
.
36.
Nazareth
,
J. L.
,
2009
, “
Conjugate Gradient Method
,”
Wiley Interdiscip. Rev.: Comput. Stat.
,
1
(
3
), pp.
348
353
.
37.
He
,
Y.
,
Bai
,
W.
,
Wang
,
L.
,
Wu
,
H.
, and
Ding
,
M.
,
2024
, “
SOH Estimation for Lithium-Ion Batteries: An Improved GPR Optimization Method Based on the Developed Feature Extraction
,”
J. Energy Storage
,
83
, p.
110678
.
38.
Chen
,
L.
,
Xie
,
S.
,
Lopes
,
A. M.
,
Li
,
H.
,
Bao
,
X.
,
Zhang
,
C.
, and
Li
,
P.
,
2024
, “
A New SOH Estimation Method for Lithium-Ion Batteries Based on Model-Data-Fusion
,”
Energy
,
286
, p.
129597
.
39.
Fan
,
Y.
,
Xiao
,
F.
,
Li
,
C.
,
Yang
,
G.
, and
Tang
,
X.
,
2020
, “
A Novel Deep Learning Framework for State of Health Estimation of Lithium-Ion Battery
,”
J. Energy Storage
,
32
, p.
101741
.
40.
Li
,
P.
,
Zhang
,
Z.
,
Xiong
,
Q.
,
Ding
,
B.
,
Hou
,
J.
,
Luo
,
D.
,
Rong
,
Y.
, and
Li
,
S.
,
2020
, “
State-of-Health Estimation and Remaining Useful Life Prediction for the Lithium-Ion Battery Based on a Variant Long Short-Term Memory Neural Network
,”
J. Power Sources
,
459
, p.
228069
.
You do not currently have access to this content.