Abstract

To prevent potential abnormalities from escalating into critical faults, a rapid and precise algorithm should be employed for detecting power battery anomalies. An unsupervised model based on a temporal convolutional autoencoder was proposed. It can quickly and accurately identify abnormal power battery data. Its encoder utilized a temporal convolutional network (TCN) structure with residuals to parallelly process data while capturing time dependencies. A novel TCN structure with an effect–cause relationship was developed for the decoder. The same-timescale connection was established between the encoder and decoder to improve the model performance. The validity of the proposed model was confirmed using a real-world car dataset. Compared with the GRU-AE model, the proposed approach reduced the parameter count and mean square error by 19.5% and 71.9%, respectively. This study provides insights into the intelligent battery pack abnormality detection technology.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Gandoman
,
F. H.
,
Jaguemont
,
J.
,
Goutam
,
S.
,
Gopalakrishnan
,
R.
,
Firouz
,
Y.
,
Kalogiannis
,
T.
,
Omar
,
N.
, and
Van Mierlo
,
J.
,
2019
, “
Concept of Reliability and Safety Assessment of Lithium-Ion Batteries in Electric Vehicles: Basics, Progress, and Challenges
,”
Appl. Energy
,
251
, p.
113343
.
2.
Meghana
,
N.
,
Pushparaju
,
M.
,
Kavitha
,
M.
,
Chakravarthy
,
N. S. K.
, and
Reddy
,
D. M.
,
2022
, “
A Critical Review on Electric Vehicle Battery Failures and Causes
,”
Proceedings of the 2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT)
,
Hyderabad, India
,
Aug. 4–6
, IEEE, pp.
1
5
.
3.
Liu
,
X.
,
Wang
,
M.
,
Cao
,
R.
,
Lyu
,
M.
,
Zhang
,
C.
,
Li
,
S.
,
Guo
,
B.
, et al
,
2023
, “
Review of Abnormality Detection and Fault Diagnosis Methods for Lithium-Ion Batteries
,”
Automot. Innov.
,
6
(
2
), pp.
256
267
.
4.
Dong
,
G.
, and
Lin
,
M.
,
2021
, “
Model-Based Thermal Anomaly Detection for Lithium-Ion Batteries Using Multiple-Model Residual Generation
,”
J. Energy Storage
,
40
, p.
102740
.
5.
Yang
,
Z.
,
Li
,
J.
,
Jiang
,
H.
, and
Liu
,
Z.
,
2021
, “
A Novel Model-Based Damage Detection Method for Lithium-Ion Batteries
,”
J. Energy Storage
,
42
, p.
102970
.
6.
Wang
,
Y.
,
Meng
,
D.
,
Li
,
R.
,
Zhou
,
Y.
, and
Zhang
,
X.
,
2021
, “
Research on Interactive Multi-Model Fault Diagnosis Method of Li-Ion Battery Based on Noise Suppression
,”
Int. J. Energy Res.
,
45
(
9
), pp.
13198
13218
.
7.
Cong
,
X.
,
Zhang
,
C.
,
Jiang
,
J.
,
Zhang
,
W.
,
Jiang
,
Y.
, and
Zhang
,
L.
,
2021
, “
A Comprehensive Signal-Based Fault Diagnosis Method for Lithium-Ion Batteries in Electric Vehicles
,”
Energies
,
14
(
5
), p.
1221
.
8.
Li
,
S.
,
Zhang
,
C.
,
Du
,
J.
,
Cong
,
X.
,
Zhang
,
L.
,
Jiang
,
Y.
, and
Wang
,
L.
,
2023
, “
Fault Diagnosis for Lithium-Ion Batteries in Electric Vehicles Based on Signal Decomposition and Two-Dimensional Feature Clustering
,”
Green Energy Intell. Transp.
,
1
(
1
), p.
100009
.
9.
Zhang
,
X.
,
Hong
,
J.
, and
Xu
,
X.
,
2023
, “
Fault Diagnosis of Real-Scenario Battery Systems Based on Modified Entropy Algorithms in Electric Vehicles
,”
J. Energy Storage
,
63
, p.
107079
.
10.
Sun
,
Z.
,
Han
,
Y.
,
Wang
,
Z.
,
Chen
,
Y.
,
Liu
,
P.
,
Qin
,
Z.
,
Zhang
,
Z.
,
Wu
,
Z.
, and
Song
,
C.
,
2022
, “
Detection of Voltage Fault in the Battery System of Electric Vehicles Using Statistical Analysis
,”
Appl. Energy
,
307
, p.
118172
.
11.
Sun
,
J.
,
Ren
,
S.
,
Shang
,
Y.
,
Zhang
,
X.
,
Liu
,
Y.
, and
Wang
,
D.
,
2023
, “
A Novel Fault Prediction Method Based on Convolutional Neural Network and Long Short-Term Memory with Correlation Coefficient for Lithium-Ion Battery
,”
J. Energy Storage
,
62
, p.
106811
.
12.
Zhang
,
X.
,
Liu
,
P.
,
Lin
,
N.
,
Zhang
,
Z.
, and
Wang
,
Z.
,
2023
, “
A Novel Battery Abnormality Detection Method Using Interpretable Autoencoder
,”
Appl. Energy
,
330
, p.
120312
.
13.
Sun
,
C.
,
He
,
Z.
,
Lin
,
H.
,
Cai
,
L.
,
Cai
,
H.
, and
Gao
,
M.
,
2023
, “
Anomaly Detection of Power Battery Pack Using Gated Recurrent Units Based Variational Autoencoder
,”
Appl. Soft Comput.
,
132
, p.
109903
.
14.
Zhao
,
C.
,
Huang
,
K.
,
Wu
,
D.
,
Han
,
X.
,
Du
,
D.
,
Zhou
,
Y.
,
Lu
,
Z.
, and
Liu
,
Y.
,
2023
, “
TAElog: A Novel Transformer AutoEncoder-Based Log Anomaly Detection Method
,”
Proceedings of the International Conference on Information Security and Cryptology
,
Hangzhou, China
,
Dec. 9–10
, Vol. 14527, pp.
37
52
.
15.
Goetz
,
C.
, and
Humm
,
B. G.
,
2023
, “Unsupervised Process Anomaly Detection Under Industry Constraints in Cyber-Physical Systems Using Convolutional Autoencoder,”
Computational Intelligence for Engineering and Management Applications. Lecture Notes in Electrical Engineering
, Vol.
984
, ed.,
Springer
,
Singapore
, pp.
659
674
.
16.
Schmitt
,
J.
,
Horstkötter
,
I.
, and
Bäker
,
B.
,
2023
, “
Electrical Lithium-Ion Battery Models Based on Recurrent Neural Networks: A Holistic Approach
,”
J. Energy Storage
,
58
, p.
106461
.
17.
Wang
,
S.
,
Stroe
,
D. I.
,
Fernandez
,
C.
,
Yu
,
C.
,
Zou
,
C.
, and
Li
,
X.
,
2020
, “
A Novel Energy Management Strategy for the Ternary Lithium Batteries Based on the Dynamic Equivalent Circuit Modeling and Differential Kalman Filtering Under Time-Varying Conditions
,”
J. Power Sources
,
450
, p.
227652
.
18.
Jiang
,
J.
,
Li
,
T.
,
Chang
,
C.
,
Yang
,
C.
, and
Liao
,
L.
,
2022
, “
Fault Diagnosis Method for Lithium-Ion Batteries in Electric Vehicles Based on Isolated Forest Algorithm
,”
J. Energy Storage
,
50
, p.
104177
.
19.
Shanmuganathan
,
V.
, and
Suresh
,
A.
,
2023
, “
LSTM-Markov Based Efficient Anomaly Detection Algorithm for IoT Environment
,”
Appl. Soft Comput.
,
136
, p.
110054
.
20.
Chen
,
X.
,
Xu
,
B.
, and
Lu
,
H.
,
2021
, “
Effects of Parallel Structure and Serial Structure on Convolutional Neural Networks
,”
J. Phys. Conf. Ser.
,
1792
(
1
), p.
012074
.
21.
Hu
,
W.
,
Dong
,
Z.
,
Huang
,
X.
,
Gao
,
Y.
,
Zhang
,
Z.
, and
Hao
,
J.
,
2023
, “
Photovoltaic Inverter Anomaly Detection Method Based on LSTM Serial Depth Autoencoder
,”
J. Phys. Conf. Ser.
,
2474
(
1
), p.
012026
.
22.
Luo
,
Y.
,
Zhou
,
J.
, and
Chen
,
L.
,
2022
, “
Classification Algorithm for Motor Imagery EEG Signals Based on Parallel DAMSCN-LSTM
,”
Proceedings of the Optical Design and Testing XII
,
Online
,
Dec. 5–11
, pp.
230
239
.
23.
Farha
,
Y. A.
, and
Gall
,
J.
,
2019
, “
MS-TCN: Multi-Stage Temporal Convolutional Network for Action Segmentation
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
,
June 15–20
, pp.
3575
3584
.
24.
Fan
,
J.
,
Zhang
,
K.
,
Huang
,
Y.
,
Zhu
,
Y.
, and
Chen
,
B.
,
2023
, “
Parallel Spatio-Temporal Attention-Based TCN for Multivariate Time Series Prediction
,”
Neural Comput. Appl.
,
35
(
18
), pp.
13109
13118
.
25.
Wan
,
R.
,
Mei
,
S.
,
Wang
,
J.
,
Liu
,
M.
, and
Yang
,
F.
,
2019
, “
Multivariate Temporal Convolutional Network: A Deep Neural Networks Approach for Multivariate Time Series Forecasting
,”
Electronics
,
8
(
8
), p.
876
.
26.
Yu
,
F.
, and
Koltun
,
V.
,
2015
, “
Multi-Scale Context Aggregation by Dilated Convolutions
,”
arXiv preprint arXiv:1511.07122
. https://arxiv.org/abs/1511.07122
27.
LeCun
,
Y.
, and
Bengio
,
Y.
,
1995
, “
Convolutional Networks for Images, Speech, and Time-Series
,”
The Handbook of Brain Theory and Neural Networks
,
3361
(
10
), p.
1995
.
28.
Koprinska
,
I.
,
Wu
,
D.
, and
Wang
,
Z.
,
2018
, “
Convolutional Neural Networks for Energy Time Series Forecasting
,”
2018 International Joint Conference on Neural Networks (IJCNN)
,
Rio, Brazil
,
July 8–13
, IEEE, pp.
1
8
.
29.
Hlaváčková-Schindler
,
K.
,
Paluš
,
M.
,
Vejmelka
,
M.
, and
Bhattacharya
,
J.
,
2007
, “
Causality Detection Based on Information-Theoretic Approaches in Time Series Analysis
,”
Phys. Rep.
,
441
(
1
), pp.
1
46
.
30.
Dufour J
,
M.
, and
Renault
,
E.
,
1998
, “
Short run and Long Run Causality in Time Series: Theory
,”
Econometrica
,
66
(
5
), pp.
1099
1125
.
31.
Li
,
K.
,
Shen
,
R.
,
Wang
,
Z.
,
Yan
,
B.
,
Yang
,
Q.
, and
Zhou
,
X.
,
2023
, “
An Efficient Wind Speed Prediction Method Based on a Deep Neural Network Without Future Information Leakage
,”
Energy
,
267
, p.
126589
.
32.
Fan
,
G.
,
Li
,
J.
, and
Hao
,
H.
,
2020
, “
Vibration Signal Denoising for Structural Health Monitoring by Residual Convolutional Neural Networks
,”
Measurement
,
157
, p.
107651
.
33.
Chen
,
H.
,
Zhang
,
Y.
,
Kalra
,
M. K.
,
Lin
,
F.
,
Chen
,
Y.
,
Liao
,
P.
,
Zhou
,
J.
, and
Wang
,
G.
,
2017
, “
Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network
,”
IEEE Trans. Med. Imaging
,
36
(
12
), pp.
2524
2535
.
34.
Li
,
Y.
, and
Yuan
,
Y.
,
2017
, “
Convergence Analysis of Two-Layer Neural Networks with ReLU Activation
,”
31st Conference on Neural Information Processing Systems (NIPS 2017)
,
Long Beach, CA
,
Dec. 4–9
.
35.
Agarap A
,
F.
,
2018
, “
Deep Learning Using Rectified Linear Units (ReLU)
,”
arXiv preprint arXiv:1803.08375
. https://arxiv.org/abs/1803.08375
36.
Tschannen
,
M.
,
Bachem
,
O.
, and
Lucic
,
M.
,
2018
, “
Recent Advances in Autoencoder-Based Representation Learning
,”
arXiv preprint arXiv:1812.05069
. https://arxiv.org/abs/1812.05069
37.
Malekzadeh
,
M.
,
Clegg
,
R. G.
, and
Haddadi
,
H.
,
2017
, “
Replacement Autoencoder: A Privacy-Preserving Algorithm for Sensory Data Analysis
,”
arXiv preprint arXiv:1710.06564
. https://arxiv.org/abs/1710.06564
38.
Lee
,
H.
,
Kim
,
J.
,
Kim
,
B.
, and
Kim
,
S.
,
2018
, “
Convolutional Autoencoder Based Feature Extraction in Radar Data Analysis
,”
Proceedings of the 2018 Joint 10th International Conference on Soft Computing and Intelligent Systems (SCIS) and 19th International Symposium on Advanced Intelligent Systems (ISIS)
,
Toyama, Japan
,
Dec. 5–8
, IEEE, pp.
81
84
.
39.
Mandelli
,
S.
,
Borra
,
F.
,
Lipari
,
V.
,
Bestagini
,
P.
,
Sarti
,
A.
, and
Tubaro
,
S.
,
2018
, “
Seismic Data Interpolation Through Convolutional Autoencoder
,”
Proceedings of the SEG International Exposition and Annual Meeting
,
Anaheim, CA
,
Oct. 14–19
.
40.
Zhang
Y.
,
2018
, “A Better Autoencoder for Image: Convolutional Autoencoder,” ICONIP17-DCEC http://users.cecs. anu.edu.au/Tom.Gedeon/conf/A-BCs2018/paper/ABCs2018_pap-er_58.pdf, Accessed March 23, 2017.
41.
Fan
,
Z.
,
Bi
,
D.
,
He
,
L.
,
Shiping
,
M.
,
Gao
,
S.
, and
Li
,
C.
,
2017
, “
Low-Level Structure Feature Extraction for Image Processing via Stacked Sparse Denoising Autoencoder
,”
Neurocomputing
,
243
, pp.
12
20
.
42.
Jeng
,
S. L.
, and
Chieng
,
W. H.
,
2022
, “
Evaluation of Cell Inconsistency in Lithium-Ion Battery Pack Using the Autoencoder Network Model
,”
IEEE Trans. Ind. Inf.
,
19
(
5
), pp.
6337
6348
.
43.
Mushtaq
,
E.
,
Zameer
,
A.
, and
Nasir
,
R.
,
2023
, “
Knacks of a Hybrid Anomaly Detection Model Using Deep Auto-Encoder Driven Gated Recurrent Unit
,”
Comput. Netw.
,
226
, p.
109681
.
44.
Lopez-Alvis
,
J.
,
Laloy
,
E.
,
Nguyen
,
F.
, and
Hermans
,
T.
,
2021
, “
Deep Generative Models in Inversion: The Impact of the Generator's Nonlinearity and Development of a New Approach Based on a Variational Autoencoder
,”
Comput. Geosci.
,
152
, p.
104762
.
45.
Luo
,
J.
,
Xu
,
Y.
,
Tang
,
C.
, and
Lv
,
J.
,
2017
, “
Learning Inverse Mapping by Autoencoder Based Generative Adversarial Nets
,”
Proceedings of the Neural Information Processing: 24th International Conference., ICONIP 2017
,
Guangzhou, China
,
Nov. 14–18
, Proceedings, Part II 24,
Springer International Publishing
, Vol.
10635
, pp.
207
216
.
46.
Jégou
,
S.
,
Drozdzal
,
M.
,
Vazquez
,
D.
,
Romero
,
A.
, and
Bengio
,
Y.
,
2017
, “
The one Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
,
Honolulu, HI
,
July 21–26
, pp.
11
19
.
47.
Alasadi
,
S. A.
, and
Bhaya
,
W. S.
,
2017
, “
Review of Data Preprocessing Techniques in Data Mining
,”
J. Eng. Appl. Sci.
,
12
(
16
), pp.
4102
4107
.
48.
Larose
,
D. T.
, and
Larose
,
C. D.
,
2014
,
Data Preprocessing
,
John Wiley & Sons, Ltd
, pp.
16
50
.
49.
Yin
,
C.
,
Zhang
,
S.
,
Wang
,
J.
, and
Xiong
,
N. N.
,
2020
, “
Anomaly Detection Based on Convolutional Recurrent Autoencoder for IoT Time Series
,”
IEEE Trans. Syst. Man. Cybern.
,
52
(
1
), pp.
112
122
.
50.
Qi
,
J.
,
Du
,
J.
,
Siniscalchi
,
S. M.
,
Ma
,
X.
, and
Lee
,
C. H.
,
2020
, “
On Mean Absolute Error for Deep Neural Network Based Vector-to-Vector Regression
,”
IEEE Signal Process Lett.
,
27
, pp.
1485
1489
.
You do not currently have access to this content.