Abstract
To prevent potential abnormalities from escalating into critical faults, a rapid and precise algorithm should be employed for detecting power battery anomalies. An unsupervised model based on a temporal convolutional autoencoder was proposed. It can quickly and accurately identify abnormal power battery data. Its encoder utilized a temporal convolutional network (TCN) structure with residuals to parallelly process data while capturing time dependencies. A novel TCN structure with an effect–cause relationship was developed for the decoder. The same-timescale connection was established between the encoder and decoder to improve the model performance. The validity of the proposed model was confirmed using a real-world car dataset. Compared with the GRU-AE model, the proposed approach reduced the parameter count and mean square error by 19.5% and 71.9%, respectively. This study provides insights into the intelligent battery pack abnormality detection technology.