Abstract

With the rapid development of new energy vehicles, a large number of lithium batteries have been produced, used, and then retired. The full utilization and safe use of the whole life cycle of the batteries have become a hot topic in the research field. Compared to brand-new batteries, retired power batteries exhibit significant inconsistency and safety risks, thus necessitating effective battery equalization and safety monitoring methods. In this article, an active equalization method for cascade utilization lithium battery pack with online measurement of electrochemical impedance spectroscopy is proposed to actively equalize the retired battery pack and alleviate the inconsistency of the battery pack. Besides, the electrochemical impedance spectrum of the single battery is measured online without adding additional hardware circuits so as to realize real-time safety monitoring and solve the safety problem of the battery. Finally, in order to verify the feasibility of the active equalization and electrochemical impedance spectrum monitoring scheme designed in this article, a simulation model is built based on the matlab-Simulink platform. The simulation results show that the six batteries in the proposed scheme model complete the active equalization in about 710 s, 850 s, and 740 s, respectively, in the balance mode, charge mode, and discharge mode, and the electrochemical impedance spectrum in the frequency range of 1–20 KHz can be successfully measured.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Wang
,
L.
,
Fang
,
Y.
,
Wang
,
L.
,
Yun
,
F.
,
Wang
,
J.
, and
Lu
,
S.
,
2020
, “
Understanding Discharge Voltage Inconsistency in Lithium-Ion Cells via Statistical Characteristics and Numerical Analysis
,”
IEEE Access
,
8
, pp.
84821
84836
.
2.
Baumann
,
M.
,
Wildfeuer
,
L.
,
Rohr
,
S.
, and
Lienkamp
,
M.
,
2018
, “
Parameter Variations Within Li-Ion Battery Packs—Theoretical Investigations and Experimental Quantification
,”
J. Energy Storage
,
18
, pp.
295
307
.
3.
Li
,
C.
,
Wang
,
N.
,
Li
,
W.
,
Li
,
Y.
, and
Zhang
,
J.
,
2022
, “
Regrouping and Echelon Utilization of Retired Lithium-Ion Batteries Based on a Novel Support Vector Clustering Approach
,”
IEEE Trans. Transp. Electrific.
,
8
(
3
), pp.
3648
3658
.
4.
Braco
,
E.
,
San Martin
,
I.
,
Berrueta
,
A.
,
Sanchis
,
P.
, and
Ursua
,
A.
,
2021
, “
Experimental Assessment of First- and Second-Life Electric Vehicle Batteries: Performance, Capacity Dispersion, and Aging
,”
IEEE Trans. Ind. Appl.
,
57
(
4
), pp.
4107
4117
.
5.
Chen
,
Y.
,
Kang
,
Y.
,
Zhao
,
Y.
,
Wang
,
L.
,
Liu
,
J.
,
Li
,
Y.
,
Liang
,
Z.
, et al
,
2021
, “
A Review of Lithium-Ion Battery Safety Concerns: The Issues, Strategies, and Testing Standards
,”
J. Energy Chem.
,
59
, pp.
83
99
.
6.
Martinez-Laserna
,
E.
,
Sarasketa-Zabala
,
E.
,
Villarreal Sarria
,
I.
,
Stroe
,
D.-I.
,
Swierczynski
,
M.
,
Warnecke
,
A.
,
Timmermans
,
J.-M.
,
Goutam
,
S.
,
Omar
,
N.
, and
Rodriguez
,
P.
,
2018
, “
Technical Viability of Battery Second Life: A Study From the Ageing Perspective
,”
IEEE Trans. Ind. Appl.
,
54
(
3
), pp.
2703
2713
.
7.
Ye
,
Y.
, and
Cheng
,
K. W. E.
,
2018
, “
Analysis and Design of Zero-Current Switching Switched-Capacitor Cell Equalization Circuit for Series-Connected Battery/Supercapacitor
,”
IEEE Trans. Veh. Technol.
,
67
(
2
), pp.
948
955
.
8.
Dam
,
S. K.
, and
John
,
V.
,
2021
, “
Low-Frequency Selection Switch Based Cell-to-Cell Battery Voltage Equalizer With Reduced Switch Count
,”
IEEE Trans. Ind. Appl.
,
57
(
4
), pp.
3842
3851
.
9.
Yang
,
C.
,
Zhang
,
X.
,
Yang
,
C.
,
Xin
,
L.
,
Liu
,
H.
, and
Li
,
Y.
,
2022
, “
Double-layer Balance System of Voltage Source Series Energy Storage Battery Pack for Electric Vehicles
,”
AIP Adv.
,
12
(
2
), p.
025006
.
10.
Uno
,
M.
, and
Hasegawa
,
K.
,
2020
, “
Modular Equalization System Based on Star-Connected Phase-Shift Switched Capacitor Converters With Inherent Constant Current Characteristics for Electric Double-Layer Capacitor Modules
,”
IEEE Trans. Power Electron.
,
35
(
10
), pp.
10271
10284
.
11.
Gao
,
M.
,
Qu
,
J.
,
Lan
,
H.
,
Wu
,
Q.
,
Lin
,
H.
,
Dong
,
Z.
, and
Zhang
,
W.
,
2020
, “
An Active and Passive Hybrid Battery Equalization Strategy Used in Group and Between Groups
,”
Electronics
,
9
(
10
), p.
1744
.
12.
Hein
,
T.
,
Ziegler
,
A.
,
Oeser
,
D.
, and
Ackva
,
A.
,
2021
, “
A Capacity-Based Equalization Method for Aged Lithium-Ion Batteries in Electric Vehicles
,”
Electr. Power Syst. Res.
,
191
, p.
106898
.
13.
Van
,
C. N.
,
Vinh
,
T. N.
,
Ngo
,
M.-D.
, and
Ahn
,
S.-J.
,
2021
, “
Optimal SoC Equalization Control for Lithium-Ion Battery Cells Connected in Series
,”
Energies
,
14
(
10
), p.
2875
.
14.
Singirikonda
,
S.
, and
Obulesu
,
Y. P.
,
2021
, “
Active Cell Voltage Equalization of Electric Vehicle Batteries by Using an Optimized Switched Capacitor Strategy
,”
J. Energy Storage
,
38
, p.
102521
.
15.
Feng
,
F.
,
Song
,
B.
,
Xu
,
J.
,
Na
,
W.
,
Zhang
,
K.
, and
Chai
,
Y.
,
2022
, “
Multiple Time Scale State-of-Charge and Capacity-Based Equalization Strategy for Lithium-Ion Battery Pack With Passive Equalizer
,”
J. Energy Storage
,
53
, p.
105196
.
16.
Liu
,
L.
,
Xu
,
B.
,
Yan
,
Z.
,
Zhou
,
W.
,
Li
,
Y.
,
Mai
,
R.
, and
He
,
Z.
,
2021
, “
A Low-Cost Multiwinding Transformer Equalization Topology for Retired Series-Connected Battery String
,”
IEEE Trans. Power Electron.
,
36
(
5
), pp.
4931
4936
.
17.
Zhang
,
L.
,
2020
, “
Research on a Balanced Circuit and Control Strategy
,”
Int. J. Low Carbon Technol.
,
15
(
4
), pp.
607
612
.
18.
Liu
,
R.
, and
Zhang
,
C.
,
2021
, “
An Active Equalization Method Based on SOC and Capacitance for Lithium-Ion Batteries in Electric Vehicles
,”
Front. Energy Res.
,
9
, p.
773838
.
19.
Wan
,
G.
,
Zhang
,
Q.
,
Li
,
M.
,
Li
,
S.
,
Fu
,
Z.
,
Liu
,
J.
, and
Li
,
G.
,
2023
, “
Improved Battery Equalization Control Strategy for Reconfigurable Converter Systems
,”
Energies
,
16
(
15
), p.
5619
.
20.
E
,
J.
,
Zhang
,
B.
,
Zeng
,
Y.
,
Wen
,
M.
,
Wei
,
K.
,
Huang
,
Z.
,
Chen
,
J.
,
Zhu
,
H.
, and
Deng
,
Y.
,
2022
, “
Effects Analysis on Active Equalization Control of Lithium-Ion Batteries Based on Intelligent Estimation of the State-of-Charge
,”
Energy
,
238
, p.
121822
.
21.
Cao
,
Y.
, and
Abu Qahouq
,
J. A.
,
2021
, “
Hierarchical SOC Equalization Controller for Battery Energy Storage System
,”
IEEE Trans. Ind. Electron.
,
68
(
10
), pp.
9386
9397
.
22.
Xu
,
B.
,
Tu
,
H.
,
Du
,
Y.
,
Yu
,
H.
,
Liang
,
H.
, and
Lukic
,
S.
,
2021
, “
A Distributed Control Architecture for Cascaded H-Bridge Converter With Integrated Battery Energy Storage
,”
IEEE Trans. Ind. Appl.
,
57
(
1
), pp.
845
856
.
23.
Central South University
, and
Yu
,
J.
,
2020
, “
Power-Matching Based SOC Equalization Method for Cascaded H-Bridge Multilevel Inverter
,”
CPSS Trans. Power Electron. Appl.
,
5
(
4
), pp.
352
363
.
24.
Piłatowicz
,
G.
,
Marongiu
,
A.
,
Drillkens
,
J.
,
Sinhuber
,
P.
, and
Sauer
,
D. U.
,
2015
, “
A Critical Overview of Definitions and Determination Techniques of the Internal Resistance Using Lithium-Ion, Lead-Acid, Nickel Metal-Hydride Batteries and Electrochemical Double-Layer Capacitors as Examples
,”
J. Power Sources
,
296
, pp.
365
376
.
25.
Miniguano
,
H.
,
Barrado
,
A.
,
Lazaro
,
A.
,
Zumel
,
P.
, and
Fernandez
,
C.
,
2020
, “
General Parameter Identification Procedure and Comparative Study of Li-Ion Battery Models
,”
IEEE Trans. Veh. Technol.
,
69
(
1
), pp.
235
245
.
26.
Messing
,
M.
,
Shoa
,
T.
, and
Habibi
,
S.
,
2021
, “
Estimating Battery State of Health Using Electrochemical Impedance Spectroscopy and the Relaxation Effect
,”
J. Energy Storage
,
43
, p.
103210
.
27.
Wang
,
X.
,
Kou
,
Y.
,
Wang
,
B.
,
Jiang
,
Z.
,
Wei
,
X.
, and
Dai
,
H.
,
2022
, “
Fast Calculation of Broadband Battery Impedance Spectra Based on S Transform of Step Disturbance and Response
,”
IEEE Trans. Transp. Electrific.
,
8
(
3
), pp.
3659
3672
.
28.
Ulgut
,
B.
,
2022
, “
Methods-Employing Multisine Electrochemical Impedance Spectroscopy for Batteries in Galvanostatic Mode
,”
J. Electrochem. Soc.
,
169
(
11
), p.
110510
.
29.
Sihvo
,
J.
,
Stroe
,
D.-I.
,
Messo
,
T.
, and
Roinila
,
T.
,
2020
, “
Fast Approach for Battery Impedance Identification Using Pseudo-Random Sequence Signals
,”
IEEE Trans. Power Electron.
,
35
(
3
), pp.
2548
2557
.
30.
Yokoshima
,
T.
,
Mukoyama
,
D.
,
Nakazawa
,
K.
,
Gima
,
Y.
,
Isawa
,
H.
,
Nara
,
H.
,
Momma
,
T.
, and
Osaka
,
T.
,
2015
, “
Application of Electrochemical Impedance Spectroscopy to Ferri/Ferrocyanide Redox Couple and Lithium Ion Battery Systems Using a Square Wave as Signal Input
,”
Electrochim. Acta
,
180
, pp.
922
928
.
You do not currently have access to this content.