Abstract

With the development of lithium-ion batteries, high capacity and high cycle stability have been the two main goals being pursued. Recent studies have shown that ZrV2O7 does not perform well in energy storage due to its low electrical conductivity and poor cycling stability. Elemental doping has proven to be an effective strategy for improving electrochemical performance. In this paper, we prepared Zr0.1Fe0.9V1.1Mo0.9O7(ZFVMO) and Zr0.1Fe0.9V1.1Mo0.9O7@c (ZFVMO@c) materials using a simple solid-phase sintering method and a fast microwave sintering method. Double ionic heterovalent substitution of Zr4+/V5+ in ZrV2O7 using Fe3+/Mo6+, Fe3+/Mo6+ gives it near-zero thermal expansion characteristics and excellent conductive properties. In electrochemical tests, the first discharge capacities of ZFVMO and ZFVMO@C are 2261 mA h g−1 and 727 mA h g−1, respectively, and the batteries were finally stabilized for 475 and 500 cycles. Compared to ZrV2O7, the electrochemical properties of ZFVMO are greatly improved.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Hu
,
L.
,
Wu
,
F.
, and
Lin
,
C.
,
2013
, “
Graphene-Modified LiFePO4 Cathode for Lithium-Ion Battery Beyond Theoretical Capacity
,”
Nat. Commun.
,
4
(
1
), p.
1687
.
2.
Ranganatha
,
S.
,
Kishore
,
B.
, and
Munichandraiah
,
N.
,
2021
, “
Facile One-Pot Solvothermal Synthesis of NiCoP and Its Electrochemical Performance as Anode for Lithium-Ion Battery
,”
Bull. Mater. Sci.
,
44
(
2
), p.
134
.
3.
Goodenough
,
J. B.
, and
Kim
,
G.
,
2010
, “
Challenges for Rechargeable Li Batteries
,”
Chem. Mater.
,
22
, pp.
587
603
.
4.
Sitinamaluwa
,
H.
,
Zhang
,
S.
,
Senadeera
,
W.
,
Will
,
G.
, and
Yan
,
C.
,
2016
, “
Carbon-Based Silicon Nanohybrid Anode Materials for Rechargeable Lithium-Ion Batteries
,”
Mater. Technol.
,
31
(
14
), pp.
872
883
.
5.
Yuan
,
Y.
,
Zheng
,
G.
,
Misra
,
S.
,
Nelson
,
J.
, and
Toney
,
M.
,
2012
, “
High-Capacity Micrometer-Sized Li2S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries
,”
J. Am. Chem. Soc.
,
134
(
37
), pp.
15387
15394
.
6.
Reddy
,
A.
,
Nagarajan
,
S.
,
Chumyim
,
P.
,
Gowda
,
S.
,
Pradhan
,
P.
,
Jadhav
,
S.
,
Dubey
,
M.
,
John
,
G.
, and
Ajayan
,
P.
,
2012
, “
Lithium Storage Mechanisms in Purpurin Based Organic Lithium-Ion Battery Electrode
,”
Sci. Rep.-UK
,
2
(
1
), p.
960
.
7.
Zubi
,
G.
,
Dufo-López
,
R.
,
Carvalho
,
M.
, and
Pasaolu
,
G.
,
2018
, “
The Lithium-Ion Battery: State of the Art and Future Perspectives
,”
Renewable Sustainable Energy Rev.
,
89
, pp.
292
308
.
8.
Qin
,
W.
,
Liu
,
H.
,
An
,
J.
, and
Wen
,
X.
,
2020
, “
Enhanced Li-Ion Battery Performance of TiO2 Nanoparticle-Loaded Li4Ti5O12 Nanosheet Anode Using Carbon-Coated Copper as Current Collector
,”
J. Power Sources
,
479
, p.
229090
.
9.
Zhao
,
B.
,
Ran
,
R.
,
Liu
,
M.
, and
Shao
,
M.
,
2015
, “
A Comprehensive Review of Li4Ti5O12-Based Electrodes for Lithium-Ion Batteries: The Latest Advancements and Future Perspectives
,”
Mater. Sci. Eng.
,
98
, pp.
1
71
.
10.
Schmuch
,
R.
,
Wagner
,
R.
,
Hörpel
,
G.
,
Placke
,
T.
, and
Winter
,
M.
,
2018
, “
Performance and Cost of Materials for Lithium-Based Rechargeable Automotive Batteries
,”
Nat. Energy
,
3
(
4
), pp.
267
278
.
11.
An
,
W.
,
Gao
,
B.
,
Mei
,
S.
,
Xiang
,
B.
,
Fu
,
J.
,
Wang
,
L.
,
Zhang
,
Q.
,
Chu
,
P. K.
, and
Huo
,
K.
,
2019
, “
Scalable Synthesis of Ant-Nest-Like Bulk Porous Silicon for High-Performance Lithium-Ion Battery Anodes
,”
Nat. Commun.
,
10
(
1
), p.
1447
.
12.
Dong
,
X.
,
Long
,
C.
,
Liu
,
J.
,
Haller
,
S.
, and
Wang
,
Y.
,
2016
, “
Environmentally-Friendly Aqueous Li (or Na)-Ion Battery With Fast Electrode Kinetics and Super-Long Life
,”
Sci. Adv.
,
2
(
1
), p.
e1501038
.
13.
Bo
,
X.
,
Qian
,
D.
,
Wang
,
Z.
, and
Meng
,
Y.
,
2012
, “
Recent Progress in Cathode Materials Research for Advanced Lithium-Ion Batteries
,”
Mater. Sci. Eng. R Rep.
,
73
(
5–6
), pp.
51
65
.
14.
Thackeray
,
M.
,
Wolverton
,
C.
, and
Isaacs
,
E.
,
2012
, “
Electrical Energy Storage for Transportation-Approaching the Limits of, and Going Beyond, Lithium-Ion Batteries
,”
Energ. Environ. Sci.
,
5
(
7
), pp.
7854
7863
.
15.
Nitta
,
N.
,
Wu
,
F.
,
Lee
,
J.
, and
Yushin
,
G.
,
2015
, “
Li-Ion Battery Materials: Present and Future
,”
Mater. Today
,
18
(
5
), pp.
252
264
.
16.
Jin
,
Y.
,
Li
,
S.
,
Kushima
,
A.
,
Zheng
,
X.
,
Sun
,
Y.
,
Xie
,
J.
,
Sun
,
J.
, et al
,
2017
, “
Self-Healing SEI Enables Full-Cell Cycling of a Silicon-Majority Anode With a Coulombic Efficiency Exceeding 99.9%
,”
Energy Environ. Sci.
,
10
(
2
), pp.
580
592
.
17.
Xia
,
Y.
,
Zhao
,
T.
,
Zhu
,
X.
,
Zhao
,
Y.
,
He
,
H.
,
Hung
,
C.
,
Zhang
,
X.
, et al
,
2021
, “
Inorganic-organic Competitive Coating Strategy Derived Uniform Hollow Gradient-Structured Ferroferric Oxide-Carbon Nanospheres for Ultra-Fast and Long-Term Lithium-Ion Battery
,”
Nat. Commun.
,
12
(
1
), p.
2973
.
18.
Zhang
,
Z.
,
Ishikawa
,
S.
,
Kikuchi
,
M.
,
Yoshikawa
,
H.
,
Lian
,
Q.
,
Wang
,
H.
,
Lna
,
T.
, et al
,
2017
, “
High-Performance Cathode Based on Microporous Mo-V-Bi Oxide for Li Battery and Investigation by Operando X-Ray Absorption Fine Structure
,”
ACS Appl. Mater. Interfaces
,
9
(
31
), pp.
26052
26059
.
19.
Zuo
,
W.
,
Luo
,
M.
,
Liu
,
X.
,
Wu
,
J.
,
Liu
,
H.
,
Li
,
J.
,
Winter
,
M.
,
Fu
,
R.
,
Yang
,
W.
, and
Yang
,
Y.
,
2020
, “
Li-Rich Cathodes for Rechargeable Li-Based Batteries: Reaction Mechanisms and Advanced Characterization Techniques
,”
Energy Environ. Sci.
,
13
(
12
), pp.
4450
4497
.
20.
Sahoo
,
P.
,
Sumithra
,
S.
,
Madras
,
G.
, and
Guru Row
,
T.
,
2011
, “
Synthesis, Structure, Negative Thermal Expansion, and Photocatalytic Property of Mo Doped ZrV2O7
,”
Inorg. Chem.
,
50
(
18
), pp.
8774
8781
.
21.
Yuan
,
B.
,
Zhang
,
L.
,
Ge
,
X.
,
Qi
,
H.
,
Xu
,
Q.
,
Chen
,
L.
,
Liang
,
E.
,
Li
,
B.
, and
Guo
,
J.
,
2021
, “
The Study of Zirconium Vanadate as a Cathode Material for Lithium-Ion Batteries
,”
RSC Adv.
,
11
(
38
), pp.
23533
23540
.
22.
Zhang
,
S.
,
Zou
,
Z.
,
Zhang
,
H.
,
Liu
,
J.
, and
Zhong
,
S.
,
2021
, “
Al/Ga Co-Doped V6O13 Nanorods With High Discharge Specific Capacity as Cathode Materials for Lithium-Ion Batteries
,”
J. Electroanalytical. Chem.
,
890
, p.
115220
.
23.
Yao
,
W.
,
Jiang
,
X.
,
Huang
,
R.
,
Li
,
W.
,
Huang
,
C.
,
Lin
,
Z.
,
Li
,
L.
, and
Chen
,
C.
,
2014
, “
Area Negative Thermal Expansion in a Beryllium Borate LiBeBO3 With Edge-Sharing Tetrahedra
,”
Chem. Commun.
,
50
(
88
), pp.
13499
13501
.
24.
Wang
,
L.
,
Jiao
,
L.
,
Yuan
,
H.
,
Guo
,
J.
,
Zhao
,
M.
,
Li
,
H.
, and
Wang
,
Y.
,
2006
, “
Synthesis and Electrochemical Properties of Mo-Doped Li[Ni1/3Mn1/3Co1/3]O2 Cathode Materials for Li-Ion Battery
,”
J. Power Sources
,
162
(
2
), pp.
1367
1372
.
25.
Liu
,
Q.
,
Yang
,
J.
,
Sun
,
X.
,
Cheng
,
X.
,
Tang
,
H.
, and
Li
,
H.
,
2014
, “
Influence of W Doped ZrV2O7 on Structure, Negative Thermal Expansion Property and Photocatalytic Performance
,”
Appl. Surf. Sci.
,
313
, pp.
41
47
.
26.
He
,
X.
,
Qi
,
H.
,
Xu
,
Q.
,
Liu
,
X.
,
Xu
,
L.
, and
Yuan
,
B.
,
2019
, “
Conductive Property of Zr0.1Fe0.9V1.1Mo0.9O7 With Low Thermal Expansion
,”
Chin. Phys. B
,
28
, p.
056501
.
27.
Choi
,
J.
,
Lee
,
S.
,
Yoon
,
S.
,
Kim
,
K.
,
Kim
,
M.
, and
Hong
,
S.
,
2019
, “
The Role of Zr Doping in Li[Ni0.6Co0.2Mn0.2]O2 as a Stable Cathode Material for Lithium-Ion Batteries
,”
ChemSusChem
,
12
(
11
), pp.
2439
2446
.
28.
Lu
,
Y.
,
Pang
,
M.
,
Shi
,
S.
,
Ye
,
Q.
,
Tian
,
Z.
, and
Wang
,
T.
,
2018
, “
Enhanced Electrochemical Properties of Zr4+-Doped Li1.20[Mn0.52Ni0.20Co0.08]O2 Cathode Material for Lithium-Ion Battery at Elevated Temperature
,”
Sci. Rep-UK.
,
8
(
1
), p.
2981
.
29.
Yuan
,
B.
,
Liu
,
X.
,
Song
,
W.
,
Cheng
,
Y.
,
Liang
,
E.
, and
Chao
,
M.
,
2014
, “
High Substitution of Fe3+ for Zr4+ in ZrV1.6P0.4O7 With Small Amount of FeV0.8P0.2O4 for Low Thermal Expansion
,”
Phys. Lett. A
,
378
(
45
), pp.
3397
3401
.
30.
Ahmed
,
S.
,
Heiba
,
Z.
,
Mostafa
,
N.
,
Shaltout
,
A.
, and
Aljoudy
,
H.
,
2018
, “
The Role of High-Valent (Mo and V) Cations in Defect Spinel Iron Oxide Nanomaterials: Toward Improving Li-Ion Storage
,”
Ceram. Int.
,
44
(
17
), pp.
20692
20699
.
31.
Qiu
,
C.
,
Yuan
,
Z.
,
Liu
,
L.
,
Cheng
,
S.
, and
Liu
,
J.
,
2013
, “
Sol-Gel Synthesis and Electrochemical Performance of Li4−xMgxTi5−xZrxO12 Anode Material for Lithium-Ion Batteries
,”
Chin. J. Chem.
,
6
(
6
), pp.
819
825
.
32.
Liu
,
Z.
,
Lu
,
T.
,
Song
,
T.
,
Yu
,
X.
,
Lou
,
X. W.
, and
Paik
,
U.
,
2017
, “
Structure-Designed Synthesis of FeS2@C Yolk-Shell Nanoboxes as a High-Performance Anode for Sodium-Ion Batteries
,”
Energy Environ. Sci.
,
10
(
7
), pp.
1576
1580
.
33.
Dargel
,
V.
,
Shpigel
,
N.
,
Sigalov
,
S.
,
Nayak
,
P.
,
Levi
,
M.
,
Daikhin
,
L.
, and
Aurbach
,
D.
,
2017
, “
In Situ Real-Time Gravimetric and Viscoelastic Probing of Surface Films Formation on Lithium Batteries Electrodes
,”
Nat. Commun.
,
8
(
1
), p.
1389
.
34.
Liu
,
H.
,
Chen
,
Y.
,
Hy
,
S.
,
An
,
K.
,
Venkatachalam
,
S.
,
Qian
,
D.
,
Zhang
,
M.
, and
Meng
,
Y. S.
,
2016
, “
Operando Lithium Dynamics in the Li-Rich Layered Oxide Cathode Material via Neutron Diffraction
,”
Adv. Energy Mater.
,
6
(
7
), p.
1502143
.
35.
Hwang
,
C. M.
, and
Park
,
J. W.
,
2010
, “
Investigation of Si–M (M=Mo, Ti, or V) Negative Electrodes Fabricated Using RF/DC Magnetron Sputtering for Lithium-Ion Batteries
,”
Surf. Coat. Tech.
,
205
, pp.
S439
S466
.
36.
Ghorbanzadeh
,
M.
,
Allahyari
,
E.
,
Riahifar
,
R.
, and
Hadavi
,
S.
,
2017
, “
Effect of Al and Zr Co-Doping on Electrochemical Performance of Cathode Li[Li0.2Ni0.13Co0.13Mn0.54]O2 for Li-Ion Battery
,”
J. Solid State Electrochem.
,
22
(
4
), pp.
1
9
.
37.
Xu
,
J. T.
,
Chou
,
S. L.
,
Gu
,
Q. F.
,
Liu
,
H. K.
, and
Dou
,
S. X.
,
2013
, “
The Effect of Different Binders on Electrochemical Properties of LiNi1/3Mn1/3C1/3O2 Cathode Material in Lithium-Ion Batteries
,”
J. Power Sources
,
225
, pp.
172
178
.
You do not currently have access to this content.