Abstract

The accurate establishment of battery model can improve the design reliability and reduce the design risk, which provides an important basis for the research of battery. First, the key parameters of the Li-ion battery model are identified by the least square method based on the full-battery equivalent circuit model of the single-particle impedance spectrum, and the diffusion coefficient and exchange current density under different temperatures and SOC conditions are calculated. At the same time, the one-dimensional thermal rate model is used as the heat source of the three-dimensional model, and the mean temperature T of the three-dimensional model is calculated by using Fourier's law, and T is fed back to the one-dimensional model as the key parameter to modify the conductivity, diffusion coefficient, and exchange current density, and a semi-empirical electrochemical-thermal coupling model with two-factor parameter modification is established. Finally, the model is verified by the temperature field distribution and discharge voltage curve at different discharge rates. The maximum temperature difference is less than 3.1 °C, and the maximum voltage difference error is less than 0.131 V. The results show that the improved model can accurately reflect the influence of temperature on the model parameters, and has high accuracy in the estimation of battery terminal voltage and SOC.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Lipu
,
M.
,
Hannan
,
M.
,
Hussain
,
A.
,
Hoque
,
M.
,
Ker
,
P.
,
Saad
,
M.
, and
Ayob
,
A.
,
2018
, “
A Review of State of Health and Remaining Useful Life Estimation Methods for Lithium-Ion Battery in Electric Vehicles: Challenges and Recommendations
,”
J. Cleaner Prod.
,
205
, pp.
115
133
.
2.
Chaoui
,
H.
,
Ibe-Ekeocha
,
C.
, and
Gualous
,
H.
,
2017
, “
Aging Prediction and State of Charge Estimation of a LiFePO4 Battery Using Input Time-Delayed Neural Networks
,”
Electr. Power Syst. Res.
,
146
, pp.
189
197
.
3.
Zhang
,
X.
,
Li
,
Y.
,
Wang
,
W.
,
Zhao
,
Y.
, and
Xu
,
T.
,
2020
, “
Research on the Reservation Matching Algorithm for Electric Vehicles Charging
,”
J. Electr. Eng.
,
15
(
2
), pp.
18
23
.
4.
Hu
,
X.
,
Li
,
S.
, and
Peng
,
H.
,
2012
, “
A Comparative Study of Equivalent Circuit Models for Li-Ion Batteries
,”
J. Power Sources
,
198
(
15
), pp.
359
367
.
5.
Ramadesigan
,
V.
,
Northrop
,
P.
,
De
,
S.
,
Santhanagopalan
,
S.
,
Braatz
,
R.
, and
Subramanian
,
V.
,
2012
, “
Modeling and Simulation of Lithium-Ion Batteries From a Systems Engineering Perspective
,”
J. Electrochem. Soc.
,
159
(
3
), pp.
31
45
.
6.
Jokar
,
A.
,
Rajabloo
,
B.
,
Désilets
,
M.
, and
Lacroix
,
M.
,
2016
, “
Review of Simplified Pseudo-Two-Dimensional Models of Lithium-Ion Batteries
,”
J. Power Sources
,
327
(
30
), pp.
44
55
.
7.
Yang
,
D.
,
Wang
,
Y.
,
Pan
,
R.
,
Chen
,
R.
, and
Chen
,
Z.
,
2018
, “
State-of-Health Estimation for the Lithium-Ion Battery Based on Support Vector Regression
,”
J. Appl. Energy
,
227
, pp.
273
283
.
8.
Chen
,
L.
,
Ding
,
Y.
,
Liu
,
B.
,
Wu
,
S.
,
Wang
,
Y.
, and
Pan
,
H.
,
2022
, “
Remaining Useful Life Prediction of Lithium-Ion Battery Using a Novel Particle Filter Framework With Grey Neural Network
,”
J. Energy
,
244
, p.
122581
.
9.
Liu
,
F.
,
Ma
,
J.
,
Su
,
W.
,
Dou
,
R.
, and
Lin
,
H.
,
2020
, “
State of Charge Estimation Method of Electric Vehicle Power Battery Life Cycle Based on Auto Regression Extended Kalman Filter
,”
Trans. China Electrotech. Soc.
,
35
(
04
), p.
698707
.
10.
Forgez
,
C.
,
Vinh Do
,
D.
,
Friedrich
,
G.
,
Morcrette
,
M.
, and
Delacourt
,
C.
,
2010
, “
Thermal Modeling of a Cylindrical LiFePO4/Graphite Lithium-Ion Battery
,”
J. Power Sources
,
195
(
9
), pp.
2961
2968
.
11.
Doyle
,
M.
,
Fuller
,
T.
, and
Newman
,
J.
,
1993
, “
Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
,”
J. Electrochem. Soc.
,
140
(
6
), pp.
1526
1533
.
12.
Atlung
,
S.
,
West
,
K.
, and
Jacobsen
,
T.
,
1979
, “
Dynamic Aspects of Solid Solution Cathodes for Electrochemical Power Sources
,”
J. Electrochem. Soc.
,
126
(
8
), pp.
1311
1321
.
13.
Zhang
,
D.
,
Popov
,
B.
, and
White
,
R.
,
2000
, “
Modeling Lithium Intercalation of a Single Spinel Particle Under Potentiodynamic Control
,”
J. Electrochem. Soc.
,
147
(
3
), pp.
831
838
.
14.
Luo
,
W.
,
Lyu
,
C.
,
Wang
,
L.
, and
Zhang
,
L.
,
2013
, “
An Approximate Solution for Electrolyte Concentration Distribution in Physics-Based Lithium-Ion Cell Models
,”
Microelectron. Reliab.
,
53
(
6
), pp.
797
804
.
15.
Jiang
,
F.
,
Peng
,
P.
, and
Sun
,
Y.
,
2013
, “
Thermal Analyses of LiFePO4/Graphite Battery Discharge Processes
,”
J. Power Sources
,
243
(
1
), pp.
181
194
.
16.
Li
,
S.
,
Wang
,
B.
,
Peng
,
H.
, and
Hu
,
X.
,
2014
, “
An Electrochemistry-Based Impedance Model for Lithium-Ion Batteries
,”
J. Power Sources
,
258
, pp.
9
18
.
17.
Leng
,
X.
,
Dai
,
Z.
,
Zheng
,
L.
,
LI
,
X.
, and
Ren
,
K.
,
2018
, “
Review on Electrochemical Impedance Spectroscopy of Lithium-Ion Batteries
,”
J. Power Sources
,
42
(
11
), pp.
1749
1752
.
18.
Ashwin
,
T. R.
,
Mcgordon
,
A.
,
Widanage
,
W. D.
, and
Jennings
,
P. A.
,
2017
, “
Modified Electrochemical Parameter Estimation of NCR18650BD Battery Using Implicit Finite Volume Method
,”
J. Power Sources
,
341
, pp.
387
395
.
19.
Shenouda
,
A.
, and
Murali
,
K.
,
2008
, “
Electrochemical Properties of Doped Lithium Titanate Compounds and Their Performance in Lithium Rechargeable Batteries
,”
J. Power Sources
,
176
(
1
), pp.
332
339
.
20.
Chang
,
C.
,
Huang
,
Z.
,
Tian
,
R.
,
Jiang
,
X.
,
Li
,
C.
, and
Feng
,
J.
,
2017
, “
Targeted Partial Surface Modification With Nano-SiO2@Li2CoPO4F as High-Voltage Cathode Material for LIBs
,”
J. Power Sources
,
364
, pp.
351
358
.
21.
Jafari
,
A.
,
Tynjälä
,
T.
,
Mousavi
,
S.
, and
Sarkomaa
,
P.
,
2008
, “
Simulation of Heat Transfer in a Ferrofluid Using Computational Fluid Dynamics Technique
,”
Int. J. Heat Fluid Flow
,
29
(
4
), pp.
1197
1202
.
22.
Kindermann
,
F.
,
Keil
,
J.
,
Frank
,
A.
, and
Jossen
,
A.
,
2017
, “
A SEI Modeling Approach Distinguishing Between Capacity and Power Fade
,”
J. Electrochem. Soc.
,
164
(
12
), pp.
287
294
.
You do not currently have access to this content.