Abstract

Water management is of significant importance to achieving high performance of proton exchange membrane fuel cells. In recent years, droplets emerged from the rib surface and accumulated at the channel corner have been found to be a crucial part of water flooding. In this study, an analytical model is first proposed to quantitatively estimate the variation in the morphology and dynamic behavior of growing droplets with consideration of the channel sidewall interaction. In order to predict the water geometry, the flow channel with compressed gas diffusion layer (GDL) is described mathematically, and water behavior at steady-state and dynamic state are both evaluated through the geometric and force analysis. The model results indicate that the droplet profile transforms from concave to convex when its size grows, in which process contact angles and channel shape play an important role. Compared with the graphite channel, the droplet in the metallic channel is more inclined to be adsorbed on the sidewall and GDL, resulting in a higher adhesion force and a lower gas shear force. The critical gas velocities for the detachment of droplets are quantitatively predicted to avoid water flooding. The model is helpful to understand the droplet behavior in the presence of channel sidewall interaction.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Zhao
,
J.
,
Huang
,
X.
,
Chang
,
H.
,
Hwa Chan
,
S.
, and
Tu
,
Z.
,
2021
, “
Effects of Operating Temperature on the Carbon Corrosion in a Proton Exchange Membrane Fuel Cell Under High Current Density
,”
Energy Convers. Manage.: X
,
10
, p.
100087
.
2.
Peng
,
L.
,
Qiu
,
D.
,
Yi
,
P.
, and
Lai
,
X.
,
2016
, “
An Analytical Model for Contact Pressure Prediction Considering Dimensional Error of Stamped Bipolar Plate and Gas Diffusion Layer in Proton Exchange Membrane Fuel Cell Stack Assembly
,”
ASME J. Electrochem. Energy Convers. Storage
,
13
(
2
), p.
021007
.
3.
Tu
,
Z.
,
Zhang
,
H.
,
Luo
,
Z.
,
Liu
,
J.
,
Wan
,
Z.
, and
Pan
,
M.
,
2013
, “
Evaluation of 5 kW Proton Exchange Membrane Fuel Cell Stack Operated at 95 °C Under Ambient Pressure
,”
J. Power Sources
,
222
, pp.
277
281
.
4.
Bao
,
Z.
,
Niu
,
Z.
, and
Jiao
,
K.
,
2020
, “
Gas Distribution and Droplet Removal of Metal Foam Flow Field for Proton Exchange Membrane Fuel Cells
,”
Appl. Energy
,
280
, p.
116011
.
5.
Qiu
,
D.
,
Peng
,
L.
,
Lai
,
X.
,
Ni
,
M.
, and
Lehnert
,
W.
,
2019
, “
Mechanical Failure and Mitigation Strategies for the Membrane in a Proton Exchange Membrane Fuel Cell
,”
Renewable Sustainable Energy Rev.
,
113
, p.
109289
.
6.
Wilberforce
,
T.
,
Khatib
,
F. N.
,
Ijaodola
,
O. S.
,
Ogungbemi
,
E.
,
El-Hassan
,
Z.
,
Durrant
,
A.
,
Thompson
,
J.
, and
Olabi
,
A. G.
,
2019
, “
Numerical Modelling and CFD Simulation of a Polymer Electrolyte Membrane (PEM) Fuel Cell Flow Channel Using an Open Pore Cellular Foam Material
,”
Sci. Total Environ.
,
678
, pp.
728
740
.
7.
Bao
,
Z.
,
Li
,
Y.
,
Zhou
,
X.
,
Gao
,
F.
,
Du
,
Q.
, and
Jiao
,
K.
,
2021
, “
Transport Properties of Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells: Effects of Compression
,”
Int. J. Heat Mass Transfer
,
178
, p.
121608
.
8.
Arama
,
F. Z.
,
Laribi
,
S.
,
Mammar
,
K.
,
Aoun
,
N.
,
Ghaitaoui
,
T.
, and
Hamouda
,
M.
,
2022
, “
Diagnosis of Water Failures in Proton Exchange Membrane Fuel Cells via Physical Parameter Resistances of the Fractional Order Model and Fast Fourier Transform Electrochemical Impedance Spectroscopy
,”
ASME J. Electrochem. Energy Convers. Storage
,
20
(
2
), p.
021004
.
9.
Akitomo
,
F.
,
Sasabe
,
T.
,
Yoshida
,
T.
,
Naito
,
H.
,
Kawamura
,
K.
, and
Hirai
,
S.
,
2019
, “
Investigation of Effects of High Temperature and Pressure on a Polymer Electrolyte Fuel Cell With Polarization Analysis and X-Ray Imaging of Liquid Water
,”
J. Power Sources
,
431
, pp.
205
209
.
10.
Wang
,
Y.
,
Ren
,
H.
, and
Li
,
C.
,
2023
, “
Effects of Cooling System Boundary Conditions on the Performance of Proton Exchange Membrane Fuel Cell: A Comprehensive Analysis
,”
ASME J. Electrochem. Energy Convers. Storage
,
21
(
2
), p.
021008
.
11.
Komiyama
,
T.
,
Sasabe
,
T.
,
Kawamura
,
K.
,
Naito
,
H.
, and
Hirai
,
S.
,
2019
, “
Effect of PEFC Rib/Channel Width on Liquid Water Accumulation and Discharge by In-Situ X-Ray Imaging
,”
ECS Trans.
,
92
(
8
), pp.
147
152
.
12.
Naito
,
H.
,
Kawamura
,
K.
,
Sakai
,
K.
,
Sasabe
,
T.
, and
Hirai
,
S.
,
2019
, “
Analysis of PEFC Gas Transport by Combination of X-Ray Radiography and Numerical Simulation
,”
ECS Trans.
,
92
(
8
), pp.
153
160
.
13.
Pei
,
H.
,
Xiao
,
C.
, and
Tu
,
Z.
,
2022
, “
Experimental Study on Liquid Water Formation Characteristics in a Novel Transparent Proton Exchange Membrane Fuel Cell
,”
Appl. Energy
,
321
, p.
119349
.
14.
Zhao
,
J.
,
Tu
,
Z.
, and
Chan
,
S. H.
,
2022
, “
In-Situ Measurement of Humidity Distribution and Its Effect on the Performance of a Proton Exchange Membrane Fuel Cell
,”
Energy
,
239
, p.
122270
.
15.
Metz
,
T.
,
Paust
,
N.
,
Müller
,
C.
,
Zengerle
,
R.
, and
Koltay
,
P.
,
2008
, “
Passive Water Removal in Fuel Cells by Capillary Droplet Actuation
,”
Sens. Actuators, A
,
143
(
1
), pp.
49
57
.
16.
Shah
,
M. M.
, and
Kandlikar
,
S. G.
,
2015
, “
Water Emergence From the Land Region and Water–Sidewall Interactions in Proton Exchange Membrane Fuel Cell gas Channels With Microgrooves
,”
J. Power Sources
,
297
, pp.
127
139
.
17.
Chen
,
L.
,
Cao
,
T.-F.
,
Li
,
Z.-H.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
,
2012
, “
Numerical Investigation of Liquid Water Distribution in the Cathode Side of Proton Exchange Membrane Fuel Cell and Its Effects on Cell Performance
,”
Int. J. Hydrogen Energy
,
37
(
11
), pp.
9155
9170
.
18.
He
,
G.
,
Yamazaki
,
Y.
, and
Abudula
,
A.
,
2010
, “
The Effect of Wall Roughness on the Liquid Removal in Micro-Channels Related to a Proton Exchange Membrane Fuel Cell(PEMFC)
,”
J. Power Sources
,
195
(
6
), pp.
1561
1568
.
19.
Han
,
S. H.
,
Choi
,
N. H.
, and
Choi
,
Y. D.
,
2012
, “
Study on the Flooding Phenomena and Performance Enhancement of PEM Fuel Cell Applying a Concus-Finn Condition
,”
Renewable Energy
,
44
, pp.
88
98
.
20.
Baik
,
K. D.
, and
Seo
,
I. S.
,
2018
, “
Metallic Bipolar Plate With a Multi-Hole Structure in the Rib Regions for Polymer Electrolyte Membrane Fuel Cells
,”
Appl Energy
,
212
, pp.
333
339
.
21.
Cho
,
S. C.
,
Wang
,
Y.
, and
Chen
,
K. S.
,
2012
, “
Droplet Dynamics in a Polymer Electrolyte Fuel Cell Gas Flow Channel: Forces, Deformation, and Detachment. I: Theoretical and Numerical Analyses
,”
J. Power Sources
,
206
, pp.
119
128
.
22.
Zhang
,
X.
, and
Qin
,
Y.
,
2019
, “
Contact Angle Hysteresis of a Water Droplet on a Hydrophobic Fuel Cell Surface
,”
J. Colloid Interface Sci.
,
545
, pp.
231
241
.
23.
Qiu
,
D.
,
Yi
,
P.
,
Peng
,
L.
, and
Lai
,
X.
,
2013
, “
Study on Shape Error Effect of Metallic Bipolar Plate on the GDL Contact Pressure Distribution in Proton Exchange Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
38
(
16
), pp.
6762
6772
.
24.
Qiu
,
D.
,
Peng
,
L.
,
Yi
,
P.
,
Lai
,
X.
, and
Lehnert
,
W.
,
2018
, “
Flow Channel Design for Metallic Bipolar Plates in Proton Exchange Membrane Fuel Cells: Experiments
,”
Energy Convers. Manag.
,
174
, pp.
814
823
.
25.
Qiu
,
D.
,
Peng
,
L.
,
Yi
,
P.
,
Lai
,
X.
,
Janßen
,
H.
, and
Lehnert
,
W.
,
2017
, “
Contact Behavior Modelling and Its Size Effect on Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
365
, pp.
190
200
.
26.
Hoppe
,
E.
,
Janßen
,
H.
,
Müller
,
M.
, and
Lehnert
,
W.
,
2021
, “
The Impact of Flow Field Plate Misalignment on the gas Diffusion Layer Intrusion and Performance of a High-Temperature Polymer Electrolyte Fuel Cell
,”
J. Power Sources
,
501
, p.
230036
.
27.
Nitta
,
I.
,
Himanen
,
O.
, and
Mikkola
,
M.
,
2008
, “
Thermal Conductivity and Contact Resistance of Compressed Gas Diffusion Layer of PEM Fuel Cell
,”
Fuel Cells
,
8
(
2
), pp.
111
119
.
28.
Liang
,
P.
,
Qiu
,
D.
,
Peng
,
L.
,
Yi
,
P.
,
Lai
,
X.
, and
Ni
,
J.
,
2018
, “
Contact Resistance Prediction of Proton Exchange Membrane Fuel Cell Considering Fabrication Characteristics of Metallic Bipolar Plates
,”
Energy Convers. Manag.
,
169
, pp.
334
344
.
29.
Fukuyama
,
Y.
,
Shiomi
,
T.
,
Aoki
,
O.
,
Kubo
,
N.
, and
Tabuchi
,
Y.
,
2011
, “
The Influence of the Liquid Water Behavior at the GDL-Channel Interface on Cell Performance
,”
ECS Trans.
,
41
(
1
), p.
583
.
30.
Kotaka
,
T.
,
Tabuchi
,
Y.
,
Pasaogullari
,
U.
, and
Wang
,
C.-Y.
,
2014
, “
Impact of Interfacial Water Transport in PEMFCs on Cell Performance
,”
Electrochim. Acta
,
146
, pp.
618
629
.
31.
Cho
,
S. C.
,
Wang
,
Y.
, and
Chen
,
K. S.
,
2012
, “
Droplet Dynamics in a Polymer Electrolyte Fuel Cell Gas Flow Channel: Forces, Deformation and Detachment. II: Comparisons of Analytical Solution With Numerical and Experimental Results
,”
J. Power Sources
,
210
, pp.
191
197
.
32.
Adamson
,
A. W.
, and
Gast
,
A. P.
,
1967
,
Physical Chemistry of Surfaces
,
Interscience Publishers
,
New York
.
33.
Gopalan
,
P.
, and
Kandlikar
,
S. G.
,
2014
, “
Modeling Dynamic Interaction Between an Emerging Water Droplet and the Sidewall of a Trapezoidal Channel
,”
Colloids Surf., A
,
441
, pp.
262
274
.
34.
Lu
,
Z.
,
Rath
,
C.
,
Zhang
,
G.
, and
Kandlikar
,
S. G.
,
2011
, “
Water Management Studies in PEM Fuel Cells, Part IV: Effects of Channel Surface Wettability, Geometry and Orientation on the Two-Phase Flow in Parallel Gas Channels
,”
Int. J. Hydrogen Energy
,
36
(
16
), pp.
9864
9875
.
35.
Shao
,
H.
,
Qiu
,
D.
,
Peng
,
L.
,
Yi
,
P.
, and
Lai
,
X.
,
2019
, “
Modeling and Analysis of Water Droplet Dynamics in the Dead-Ended Anode Gas Channel for Proton Exchange Membrane Fuel Cells
,”
Renewable Energy
,
138
, pp.
842
851
.
36.
Gopalan
,
P.
, and
Kandlikar
,
S. G.
,
2014
, “
Effect of Channel Materials and Trapezoidal Corner Angles on Emerging Droplet Behavior in Proton Exchange Membrane Fuel Cell Gas Channels
,”
J. Power Sources
,
248
, pp.
230
238
.
37.
Liao
,
S.
,
Qiu
,
D.
,
Yi
,
P.
,
Peng
,
L.
, and
Lai
,
X.
,
2022
, “
Modeling of a Novel Cathode Flow Field Design With Optimized Sub-Channels to Improve Drainage for Proton Exchange Membrane Fuel Cells
,”
Energy
,
261
, p.
125235
.
38.
Theodorakakos
,
A.
,
Ous
,
T.
,
Gavaises
,
M.
,
Nouri
,
J. M.
,
Nikolopoulos
,
N.
, and
Yanagihara
,
H.
,
2006
, “
Dynamics of Water Droplets Detached From Porous Surfaces of Relevance to PEM Fuel Cells
,”
J. Colloid Interface Sci.
,
300
(
2
), pp.
673
687
.
39.
Andersson
,
M.
,
Vukčević
,
V.
,
Zhang
,
S.
,
Qi
,
Y.
,
Jasak
,
H.
,
Beale
,
S. B.
, and
Lehnert
,
W.
,
2019
, “
Modeling of Droplet Detachment Using Dynamic Contact Angles in Polymer Electrolyte Fuel Cell Gas Channels
,”
Int. J. Hydrogen Energy
,
44
(
21
), pp.
11088
11096
.
You do not currently have access to this content.