Abstract

Rapid and accurate estimation of the state of health of lithium-ion batteries is of great significance. This paper aims to address two issues faced when applying deep learning methods to estimate the health status of lithium-ion batteries: high data quality requirements and poor model generalizability. This paper proposes a comparison-transfer learning approach with cyclic synchronization to estimate the state of health of lithium-ion batteries. First, a cyclic synchronization method based on the Bezier curve fitting algorithm is introduced to synchronize the data obtained at different charge–discharge cycles of the lithium-ion battery, facilitating input to the model. Second, a comparison-transfer network using the Pearson correlation coefficient is proposed to transfer knowledge from the source dataset to predict the target dataset under different environmental temperatures. By training a pre-trained model on the source dataset and utilizing the correlation coefficient to analyze the similarity between the source and target datasets, the accumulated knowledge in the source dataset can be effectively utilized to enhance prediction performance on the target dataset. In the experiments, the proposed method is validated using the lithium-ion battery aging public datasets. The experimental results demonstrate that the proposed approach achieves superior prediction performance in the case of small-sample sizes, exhibiting higher accuracy and stability compared to traditional deep learning methods.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Han
,
X.
,
Lu
,
L.
,
Zheng
,
Y.
,
Feng
,
Y.
,
Li
,
Z.
,
Li
,
J.
, and
Ouyang
,
M.
,
2021
, “
A Review on the Key Issues of the Lithium-Ion Battery Degradation Among the Whole Life Cycle
,”
eTransportation
,
1
, p.
100005
.
2.
Datong
,
L.
,
Liu
,
D.
,
Limeng
,
G.
, et al
,
2015
, “
Review on Lithium-Ion Battery Health Assessment and Lifetime Prediction
,”
Chin. J. Sci. Instrum.
,
36
(
1
), pp.
1
16
.
3.
Pradyumna
,
T.K.
,
Cho
,
K.
,
Kim
,
M.
, and
Cho
,
W.
,
2022
, “
Capacity estimation of lithium-ion batteries using convolutional neural network and impedance spectra
,”
J. Power Electron.
,
22
(
5
), pp.
805
858
.
4.
Ruoke
,
Z.
,
Yongfang
,
G.
,
Xiangyuan
,
Y.
, and
Xiaoya
,
H.
,
2023
, “
Review on Data-Driven Remaining Useful Life Prediction of Lithium-Ion Batteries
,”
J. Power Sources
,
21
(
5
), pp.
182
190
.
5.
Chong
,
L.
,
Chenghui
,
W.
,
Gao
,
W.
,
Zonghu
,
L.
, and
Chengzhi
,
M.
,
2022
, “
Data-Driven Techniques for Lithium-Ion Battery Health State Estimation
,”
Electr. Power
,
55
(
08
), pp.
73
86
.
6.
Qin
,
T.
,
Zeng
,
S.
, and
Guo
,
J.
,
2015
, “
Robust Prognostics for State of Health Estimation of Lithium-Ion Batteries Based on an Improved PSO–SVR Model
,”
Microelectron. Reliab.
,
55
(
9–10
), pp.
1280
1284
.
7.
Wang
,
Y.
,
Ni
,
Y.
,
Lu
,
S.
,
Wang
,
J.
, and
Zhang
,
X.
,
2019
, “
Remaining Useful Life Prediction of Lithium-Ion Batteries Using Support Vector Regression Optimized by Artificial Bee Colony
,”
IEEE Trans. Veh. Technol.
,
68
(
10
), pp.
9543
9553
.
8.
Liu
,
D.
,
Zhou
,
J.
,
Pan
,
D.
,
Peng
,
Y.
, and
Peng
,
X.
,
2015
, “
Lithium-Ion Battery Remaining Useful Life Estimation With an Optimized Relevance Vector Machine Algorithm With Incremental Learning
,”
Measurement
,
63
, pp.
143
151
.
9.
Tagade
,
P.
,
Hariharan
,
K. S.
,
Ramachandran
,
S.
,
Khandelwal
,
A.
,
Naha
,
A.
,
Kolake
,
S. M.
, and
Han
,
S. H.
,
2020
, “
Deep Gaussian Process Regression for Lithium-Ion Battery Health Prognosis and Degradation Mode Diagnosis
,”
J. Power Sources
,
445
, pp.
1
14
.
10.
Xiaocong
,
W.
,
Zhenhang
,
H.
,
Zhuo
,
C.
, et al
,
2023
, “
Joint Prediction of SOC and SOH for Lithium-Ion Battery Energy Storage Systems Based on LSTM
,”
IEEE Access
,
11
, pp.
70263
70273
.
11.
Liu
,
J.
,
Hongwei
,
Z.
, and
Yongjun
,
Y.
,
2021
, “
Health State Estimation of Lithium-Ion Batteries Based on LSTM and EIS
,”
J. Sens. Microsyst.
,
2021
(
012
), p.
040
.
12.
Yanwen
,
D.
, and
Aiqing
,
Y.
,
2022
, “
Estimation of Lithium-Ion Battery SOH Using CNN-LSTM&GRU Combination Based on Health Characteristic Parameters
,”
Energy Storage Sci. Technol.
,
2022
(
005
), p.
011
.
13.
Kang
,
L.
,
Longyun
,
K.
, and
Di
,
X.
,
2023
, “
Online State of Health Estimation of Lithium-Ion Batteries Based on Charging Process and Long Short-Term Memory Recurrent Neural Network
,”
Batteries
,
9
(
2
).
14.
Zhang
,
Y.
,
Xiong
,
R.
,
He
,
H.
, and
Pecht
,
M. G.
,
2018
, “
Long Short-Term Memory Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
,”
IEEE Trans. Veh. Technol.
,
67
(
7
), pp.
5695
5705
.
15.
Penghua
,
L.
,
Zijian
,
Z.
,
Qingyu
,
X.
,
Ding
,
B.
,
Hou
,
J.
,
Luo
,
D.
,
Rong
,
Y.
, and
Li
,
S.
,
2020
, “
State-of-Health Estimation and Remaining Useful Life Prediction for the Lithium-Ion Battery Based on a Variant Long Short Term Memory Neural Network
,”
J. Power Sources
,
459
, pp.
1
12
.
16.
Dianwei
,
J.
,
Zeyu
,
G.
, and
Zhihong
,
Z.
,
2023
, “
Research on Health and Remaining Life Prediction Algorithm for Lithium-Ion Batteries
,”
Power Syst. Prot. Control
,
51
(
01
), pp.
122
130
.
17.
Severson
,
K.
,
Attia
,
P.
,
Jin
,
N.
,
Perkins
,
N.
,
Jiang
,
B.
,
Yang
,
Z.
,
Chen
,
M. H.
, et al
,
2019
, “
Data-Driven Prediction of Battery Cycle Life Before Capacity Degradation
,”
Nat. Energy
,
4
(
5
), pp.
383
391
.
18.
Liu
,
K.
,
Li
,
Y.
,
Hu
,
X.
,
Lucu
,
M.
, and
Widanage
,
W. D.
,
2020
, “
Gaussian Process Regression With Automatic Relevance Determination Kernel for Calendar Aging Prediction of Lithium-Ion Batteries
,”
IEEE Trans. Ind. Inf.
,
16
(
6
), pp.
3767
3777
.
19.
Zhou
,
K. Q.
,
Qin
,
Y.
, and
Yuen
,
C.
,
2022
, “
Transfer-Learning-Based State-of-Health Estimation for Lithium-Ion Battery With Cycle Synchronization
,”
IEEE/ASME Trans. Mechatron.
,
28
(
2
), pp.
692
702
.
20.
Hermes
,
D.
,
2019
, “
A 2-Norm Condition Number for Bezier Curve Intersection
,”
Comput. Aided Geom. Des.
,
75
, p.
101791
.
21.
Deyang
,
J.
,
Feng
,
J.
,
Lei
,
D.
, et al
,
2022
, “
Data Restoration of Photovoltaic Power Station Based on Pearson Correlation Coefficient
,”
Proc. Chin. Soc. Electr. Eng.
,
42
(
4
), pp.
1514
1522
.
You do not currently have access to this content.