Abstract

Accurate estimation of the internal temperature of lithium-ion batteries plays an important role in the development of a suitable battery thermal management system, safeguarding the healthy and safe operation of batteries and improving battery performance. In order to accurately estimate the internal temperature of the battery, this paper proposes a method for estimating the internal temperature of lithium-ion batteries based on an improved electro-thermal coupling model and an Adaptive Network-Based Fuzzy Inference System (ANFIS). First, a parameterization method of the electrical model is proposed, and an electrical model whose parameters are affected by temperature and SOC is established. Second, to overcome the complex nonlinear modeling problem of lithium-ion batteries, the ANFIS thermal model is established. Then, an improved electro-thermal coupling model for lithium-ion batteries is established by combining the proposed electrical model and the ANFIS thermal model to improve the accuracy of estimating the internal temperature of the battery. Finally, the effectiveness of the proposed method is verified by simulation and experiment.

References

1.
Tarascon
,
J. M.
, and
Armand
,
M.
,
2001
, “
Issues and Challenges Facing Rechargeable Lithium Batteries
,”
Nature
,
414
(
6861
), pp.
359
367
.
2.
Goodenough
,
J. B.
, and
Kim
,
Y.
,
2010
, “
Challenges for Rechargeable Li Batteries
,”
Chem. Mater.
,
22
(
3
), pp.
587
603
.
3.
Lei
,
Z.
,
Yang
,
Y.
,
Chaoyang
,
C.
,
Yi
,
Z.
, and
Yan
,
Q.
,
2023
, “
Effect of Ambient Temperature on the Discharge Performance of Lithium-Ion Batteries[J/OL]
,”
J. Power Sources
,
21
(
05
), pp.
207
213
.
4.
Zhan
,
S. D.
,
Li
,
K. W.
,
Cai
,
Y. B.
,
Shi
,
H. Y.
, and
Wu
,
Y. X.
,
2021
, “
Thermal Simulation Analysis of Single Lithium-Ion Battery Based on Fluent
,”
Times Automotive
,
2021
(
22
), pp.
128
130
.
5.
Zhu
,
J. G.
,
Sun
,
Z. C.
,
Wei
,
X. Z.
,
Dai
H.F.
,
2015
, “
A New Lithium-Ion Battery Internal Temperature On-Line Estimate Method Based on Electrochemical Impedance Spectroscopy Measurement
,”
J. Power Sources
,
274
, pp.
990
1004
.
6.
Zabara
,
M. A.
,
Katırcı
,
G.
, and
Ülgüt
,
B.
,
2022
, “
Non-Linear Harmonics in EIS of Batteries With Lithium Anodes: Proper Controls and Analysis
,”
Electrochim. Acta
,
429
, p.
140969
.
7.
Rashid
,
M.
,
Faraji-Niri
,
M.
,
Sansom
,
J.
,
Sheikh
,
M.
,
Widanage
,
D.
, and
Marco
,
J.
,
2023
, “
Dataset for Rapid State of Health Estimation of Lithium Batteries Using EIS and Machine Learning: Training and Validation
,”
Data in Brief
,
48
, p.
109157
.
8.
Calborean
,
A.
,
Bruj
,
O.
, and
Morari
,
C.
,
2022
, “
Leaf and Hexagonal Grid Designs for Lead-Acid Battery. An EIS Analysis
,”
J. Energy Storage
,
56
, p.
105933
.
9.
Babaeiyazdi
,
I.
,
Rezaei-Zare
,
A.
, and
Shokrzadeh
,
S.
,
2021
, “
State of Charge Prediction of EV Li-Ion Batteries Using EIS: A Machine Learning Approach
,”
Energy
,
223
, p.
120116
.
10.
Liu
,
G.
,
Ouyang
,
M. G.
,
Lu
,
L. G.
,
Li
,
J. Q.
,
Liang
,
J. H.
, and
Han
,
X. E. B.
,
2013
, “
Online Estimation of the Transfer Function of the Internal Temperature Field of Lithium-Ion Batteries
,”
J. Automot. Saf. Energy Conserv.
,
4
(
01
), pp.
61
66
.
11.
Gu
,
W.
, and
Wang
,
C.
,
2000
, “
Thermal-Electrochemical Modeling of Battery Systems
,”
J. Electrochem. Soc.
,
147
(
8
), pp.
2910
2922
.
12.
Wang
,
C.
, and
Srinivasan
,
V.
,
2002
, “
Computational Battery Dynamics (CBD)—Electrochemical/Thermal Coupled Modeling and Multi-Scale Modeling
,”
J. Power Sources
,
110
(
2
), pp.
364
376
.
13.
Chiew
,
J.
,
Chin
,
C. S.
,
Toh
,
W. D.
,
Gao
,
Z.
,
Jia
,
J.
, and
Zhang
,
C. Z.
,
2019
, “
A Pseudo Three-Dimensional Electrochemical-Thermal Model of a Cylindrical LiFePO4/Graphite Battery
,”
Appl. Therm. Eng.
,
147
, pp.
450
463
.
14.
Li
,
D.
,
Yang
,
L.
, and
Li
,
C.
,
2020
, “
Control-Oriented Thermal-Electrochemical Modeling and Validation of Large Size Prismatic Lithium Battery for Commercial Applications
,”
Energy
,
214
, p.
119057
.
15.
Wu
,
L.
,
Liu
,
K.
, and
Pang
,
H.
,
2021
, “
Evaluation and Observability Analysis of an Improved Reduced-Order Electrochemical Model for Lithium-Ion Battery
,”
Electrochim. Acta
,
368
, p.
137604
.
16.
Pals
,
C. R.
, and
Newman
,
J.
,
1995
, “
Thermal Modeling of the Lithium/Polymer Battery II. Temperature Profiles in a Cell Stack
,”
J. Electrochem. Soc.
,
142
(
10
), pp.
3282
3288
.
17.
Forgez
,
C.
,
Do
,
D. V.
,
Friedrich
,
G.
,
Morcrette
,
M.
, and
Delacourt
,
C.
,
2010
, “
Thermal Modeling of a Cylindrical LiFePO4/Graphite Lithium-Ion Battery
,”
J. Power Sources
,
195
(
9
), pp.
2961
2668
.
18.
Lin
,
X. F.
,
Perez
,
H. E.
,
Mohan
,
S.
,
Siegel
,
J. B.
,
Stefanopoulou
,
A. G.
,
Ding
,
Y.
, and
Castanier
,
M. P.
,
2014
, “
A Lumped-Parameter Electro-Thermal Model for Cylindrical Batteries
,”
J. Power Sources
,
257
, pp.
1
11
.
19.
Hu
,
X.
,
Liu
,
W.
,
Lin
,
X.
, and
Xie
,
Y.
,
2019
, “
A Comparative Study of Control-Oriented Thermal Models for Cylindrical Li-Ion Batteries
,”
IEEE Trans. Transp. Electrificat.
,
5
(
4
), pp.
1237
1253
.
20.
Duong
,
V.-H.
,
Bastawrous
,
H. A.
, and
See
,
K. W.
,
2017
, “
Accurate Approach to the Temperature Effect on State of Charge Estimation in the LiFePO4 Battery Under Dynamic Load Operation
,”
Appl. Energy
,
204
, pp.
560
571
.
21.
Panchal
,
S.
,
Dincer
,
I.
,
Agelin-Chaab
,
M.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2016
, “
Experimental and Theoretical Investigations of Heat Generation Rates for a Water Cooled LiFePO4 Battery
,”
Int. J. Heat Mass Transfer
,
101
, pp.
1093
1102
.
22.
Panchal
,
S.
,
Dincer
,
I.
,
Agelin-Chaab
,
M.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2016
, “
Thermal Modeling and Validation of Temperature Distributions in a Prismatic Lithium-Ion Battery at Different Discharge Rates and Varying Boundary Conditions
,”
Appl. Therm. Eng.
,
96
, pp.
190
199
.
23.
Zhu
,
S.
,
He
,
C.
,
Zhao
,
N.
, and
Sha
,
J.
,
2021
, “
Data-Driven Analysis on Thermal Effects and Temperature Changes of Lithium-Ion Battery
,”
J. Power Sources
,
482
, p.
228983
.
24.
Arora
,
S.
,
Shen
,
W.
, and
Kapoor
,
A.
,
2017
, “
Neural Network Based Computational Model for Estimation of Heat Generation in LiFePO4 Pouch Cells of Different Nominal Capacities
,”
Comput. Chem. Eng.
,
101
, pp.
81
94
.
25.
Fang
,
K.
,
Mu
,
D.
,
Chen
,
S.
,
Wu
,
B.
, and
Wu
,
F.
,
2012
, “
A Prediction Model Based on Artificial Neural Network for Surface Temperature Simulation of Nickel–Metal Hydride Battery During Charging
,”
J. Power Sources
,
208
, pp.
378
382
.
26.
Feng
,
F.
,
Teng
,
S.
,
Liu
,
K.
,
Xie
,
J.
,
Xie
,
Y.
,
Liu
,
B.
, and
Li
,
K.
,
2020
, “
Co-Estimation of Lithium-Ion Battery State of Charge and State of Temperature Based on a Hybrid Electrochemical-Thermal-Neural-Network Model
,”
J. Power Sources
,
455
, p.
227935
.
27.
Xie
,
Y.
,
He
,
X.-j.
,
Hu
,
X.-s.
,
Li
,
W.
,
Zhang
,
Y.-j.
,
Liu
,
B.
, and
Sun
,
Y.-t.
,
2020
, “
An Improved Resistance-Based Thermal Model for a Pouch Lithium-Ion Battery Considering Heat Generation of Posts
,”
Appl. Therm. Eng.
,
164
, p.
114455
.
28.
Kim
,
T. J.
,
Youn
,
B. D.
, and
Kim
,
H. J.
,
2013
, “
Battery Pack Temperature Estimation Model for EVs and Its Semi-Transient Case Study
,”
Chem. Eng. Trans.
,
33
, pp.
955
960
.
29.
Panchal
,
S.
,
Dincer
,
I.
,
Agelin-Chaab
,
M.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2018
, “
Design and Simulation of a Lithium-Ion Battery at Large C-Rates and Varying Boundary Conditions Through Heat Flux Distributions
,”
Measurement
,
116
, pp.
382
390
.
30.
Panchal
,
S.
,
Mathew
,
M.
,
Dincer
,
I.
,
Agelin-Chaab
,
M.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2018
, “
Thermal and Electrical Performance Assessments of Lithium-Ion Battery Modules for an Electric Vehicle Under Actual Drive Cycles
,”
Electr. Power Syst. Res.
,
163
, pp.
18
27
.
31.
Kleiner
,
J.
,
Komsiyska
,
L.
,
Elger
,
G.
, and
Endisch
C.
,
2019
, “
Thermal Modelling of a Prismatic Lithium-Ion Cell in a Battery Electric Vehicle Environment: Influences of the Experimental Validation Setup
,”
Energies
,
13
(
1
), p.
62
.
You do not currently have access to this content.