Abstract

The porosity of the cathode in a lithium–oxygen battery is a crucial parameter that influences oxygen transport and active surface area availability. This study explores various cathode models with different initial porosity distributions and analyzes the porosity evolution during discharge. The objective is to maximize the active surface area utilization of the cathode and increase the battery’s discharge capacity. The simulations employ a recently developed lattice Boltzmann method (LBM) model proposed by Chen et al. (2017, “Simulation of Double Diffusive Convection in Fluid-Saturated Porous Media by Lattice Boltzmann Method,” Int. J. Heat Mass Transfer, 108, pp. 1501–1510), which is capable of handling spatial and temporal variations in diffusion coefficient values. The results demonstrate that a hierarchical porous cathode provides a better specific capacity than a uniform porous cathode with the same average initial porosity. The specific capacity increases as the magnitude of initial porosity variation in the domain increases. Furthermore, incorporating oxygen channels improves oxygen transport in the cathode and offers a better specific capacity than the hierarchical porous cathode. A combination of hierarchical porous media and oxygen channels delivers the best specific capacity among all the other cathode models, as it efficiently balances oxygen transport and active surface area.

References

1.
Cui
,
Y.
,
Wen
,
Z.
,
Liang
,
X.
,
Lu
,
Y.
,
Jin
,
J.
,
Wu
,
M.
, and
Wu
,
X.
,
2012
, “
A Tubular Polypyrrole Based air Electrode with Improved O2 Diffusivity for Li–O2 Batteries
,”
Energy Environ. Sci.
,
5
(
7
), pp.
7893
7897
.
2.
Wang
,
H.
,
Wang
,
X.
,
Li
,
M.
,
Zheng
,
L.
,
Guan
,
D.
,
Huang
,
X.
,
Xu
,
J.
, and
Yu
,
J.
,
2020
, “
Porous Materials Applied in Nonaqueous Li–O2 Batteries: Status and Perspectives
,”
Adv. Mater.
,
32
(
44
), p.
2002559
.
3.
Ye
,
L.
,
Lv
,
W.
,
Zhang
,
K. H.
,
Wang
,
X.
,
Yan
,
P.
,
Dickerson
,
J. H.
, and
He
,
W.
,
2015
, “
A New Insight Into the Oxygen Diffusion in Porous Cathodes of Lithium-Air Batteries
,”
Energy
,
83
(
1
), pp.
669
673
.
4.
Li
,
X.
, and
Faghri
,
A.
,
2012
, “
Optimization of the Cathode Structure of Lithium-Air Batteries Based on a Two-Dimensional, Transient, Non-Isothermal Model
,”
J. Electrochem. Soc.
,
159
(
10
), p.
A1747
.
5.
Read
,
J.
,
Mutolo
,
K.
,
Ervin
,
M.
,
Behl
,
W.
,
Wolfenstine
,
J.
,
Driedger
,
A.
, and
Foster
,
D.
,
2003
, “
Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery
,”
J. Electrochem. Soc.
,
150
(
10
), p.
A1351
.
6.
Padbury
,
R.
, and
Zhang
,
X.
,
2011
, “
Lithium–Oxygen Batteries—Limiting Factors That Affect Performance
,”
J. Power Sources
,
196
(
10
), pp.
4436
4444
.
7.
Das
,
M. K.
, and
Jithin
,
M.
,
2020
, “Transport Phenomena, Electrochemistry and Degradation in Lithium-Oxygen Battery,” in
Dynamics and Control of Energy Systems
,
Springer
,
New York
, p.
433
464
.
8.
Andersen
,
C. P.
,
Hu
,
H.
,
Qiu
,
G.
,
Kalra
,
V.
, &
Sun
,
Y.
,
2015
, “
Pore-Scale Transport Resolved Model Incorporating Cathode Microstructure and Peroxide Growth in Lithium-Air Batteries
,”
J. Electrochem. Soc.
,
162
(
7
), p.
A1135
.
9.
Jithin
,
M.
,
Das
,
M. K.
, and
De
,
A.
,
2016
, “
Lattice Boltzmann Simulation of Lithium Peroxide Formation in Lithium–Oxygen Battery
,”
ASME J. Electrochem. Energy Convers. Storage
,
13
(
3
), p.
031003
.
10.
Wang
,
F.
, and
Li
,
X.
,
2018
, “
Pore-scale Simulations of Porous Electrodes of Li–O2 Batteries at Different Saturation Levels
,”
ACS Appl. Mater. Interfaces
,
10
(
31
), pp.
26222
26232
.
11.
Fang
,
W. Z.
,
Qiao
,
R.
,
Kang
,
Q.
, and
Tao
,
W. Q.
,
2021
, “
Pore-Scale Simulation of Reactive Transport Processes in Lithium-Oxygen Batteries
,”
Int. Commun. Heat and Mass Transf.
,
129
(
1
), p.
105740
.
12.
Sandhu
,
S. S.
,
Fellner
,
J. P.
, and
Brutchen
,
G. W.
,
2007
, “
Diffusion-Limited Model for a Lithium/Air Battery With an Organic Electrolyte
,”
J. Power Sources
,
164
(
1
), pp.
365
371
.
13.
Li
,
X.
,
Huang
,
J.
, and
Faghri
,
A.
,
2015
, “
Modeling Study of a Li–O2 Battery With an Active Cathode
,”
Energy
,
81
(
1
), pp.
489
500
.
14.
Andrei
,
P.
,
Zheng
,
J. P.
,
Hendrickson
,
M.
, &
Plichta
,
E. J.
,
2010
, “
Some Possible Approaches for Improving the Energy Density of Li-Air Batteries
,”
J. Electrochem. Soc.
,
157
(
12
), p.
A1287
.
15.
Wang
,
Y.
,
Hao
,
L.
, and
Bai
,
M.
,
2021
, “
Modeling Studies of the Discharge Performance of Li–O2 Batteries With Different Cathode Open Structures
,”
J. Electrochem. Soc.
,
168
(
7
), p.
070517
.
16.
Jiang
,
K.
,
Liu
,
X.
,
Lou
,
G.
,
Wen
,
Z.
, and
Liu
,
L.
,
2020
, “
Parameter Sensitivity Analysis and Cathode Structure Optimization of a Non-Aqueous Li–O2 Battery Model
,”
J. Power Sources
,
451
(
1
), p.
227821
.
17.
Chen
,
S.
,
Yang
,
B.
, and
Zheng
,
C.
,
2017
, “
Simulation of Double Diffusive Convection in Fluid-Saturated Porous Media by Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
108
(
1
), pp.
1501
1510
.
18.
Jithin
,
M.
,
De Shubham
,
A.
, and
Das
,
M. K.
,
2013
, “
Study of Lid Driven Rectangular Cavities Using LBM
,”
AIP Conf. Proc
,
1558
(
1
), pp.
212
215
.
19.
Jithin
,
M.
,
Siddharth
,
S.
,
Das
,
M. K.
, and
De
,
A.
,
2017
, “
Simulation of Coupled Heat and Mass Transport with Reaction in PEM Fuel Cell Cathode Using Lattice Boltzmann Method
,”
Ther. Sci. Eng. Prog.
,
4
(
1
), pp.
85
96
.
20.
Jithin
,
M.
,
Kumar
,
N.
,
De
,
A.
, &
Das
,
M. K.
,
2018
, “
Pore-Scale Simulation of Shear Thinning Fluid Flow Using Lattice Boltzmann Method
,”
Transp. Porous Media
,
121
(
3
), pp.
753
782
.
21.
Madhavan
,
J.
,
Das
,
M. K.
, and
De
,
A.
,
2019
, “
Lattice Boltzmann Simulations of Anode Supported Solid Oxide Fuel Cell
,”
AIP Conf. Proc
,
2134
(
1
), p.
030009
.
22.
Read
,
J.
,
2002
, “
Characterization of the Lithium/Oxygen Organic Electrolyte Battery
,”
J. Electrochem. Soc.
,
149
(
9
), p.
A1190
.
23.
O'Laoire
,
C. M.
,
2010
,
Investigations of Oxygen Reduction Reactions in Non-Aqueous Electrolytes and the Lithium-Air Battery
,
Northeastern University
.
24.
Ren
,
X.
,
Zhang
,
S. S.
,
Tran
,
D. T.
, &
Read
,
J.
,
2011
, “
Oxygen Reduction Reaction Catalyst on Lithium/air Battery Discharge Performance
,”
J. Mater. Chem.
,
21
(
27
), pp.
10118
10125
.
25.
Lu
,
Y. C.
,
Kwabi
,
D. G.
,
Yao
,
K. P.
,
Harding
,
J. R.
,
Zhou
,
J.
,
Zuin
,
L.
, and
Shao-Horn
,
Y.
,
2011
, “
The Discharge Rate Capability of Rechargeable Li–O2 Batteries
,”
Energy Environ. Sci.
,
4
(
8
), pp.
2999
3007
.
26.
Xu
,
W.
,
Xiao
,
J.
,
Zhang
,
J.
,
Wang
,
D.
, and
Zhang
,
J. G.
,
2009
, “
Optimization of Nonaqueous Electrolytes for Primary Lithium/Air Batteries Operated in Ambient Environment
,”
J. Electrochem. Soc.
,
156
(
10
), p.
A773
.
27.
Matyka
,
M.
,
Khalili
,
A.
, and
Koza
,
Z.
,
2008
, “
Tortuosity-Porosity Relation in Porous Media Flow
,”
Phys. Rev. E
,
78
(
2
), p.
026306
.
28.
Jithin
,
M.
,
Kumar
,
N.
,
Das
,
M. K.
, and
De
,
A.
,
2017
, “Estimation of Permeability of Porous Material Using Pore Scale LBM Simulations,”
Fluid Mechanics and Fluid Power–Contemporary Research
,
Springer
,
New York
, pp.
1381
1388
.
29.
Jithin
,
M.
,
Das
,
M. K.
, and
De
,
A.
,
2021
, “
Phase Field Lattice Boltzmann Simulations of Water Droplet Transport in a Proton Exchange Membrane Fuel Cell Flow Channel
,”
Int. J. Energy Clean Environ.
,
22
(
3
), pp.
43
76
.
30.
Madhavan
,
J.
,
Das
,
M. K.
, and
De
,
A.
,
2022
, “
A Multiscale Approach for Stable Relaxation Parameter Values in Lattice Boltzmann Simulations of Heat and Mass Transport in Porous Media
,”
Numer. Heat Transf. Part B: Fundamentals.
,
82
(
1–2
), pp.
41
59
.
You do not currently have access to this content.