Abstract

In order to solve the problem of lower available capacity and shorter cycle life due to the barrel effect of series-connected batteries, as well as the problem of pseudo-equalization caused by battery aging, this paper proposes a modified modular multilevel converter (MMC) reconfigurable equalization scheme with difference of voltage variation (DOVV) as the equalization variable. The equalization topology consists of an MMC circuit and a voltage regulator, which effectively solves the problems of low total available capacity, inefficient energy transfer, and slow equalization by reducing the number of switches and achieving independent control of the equalization and voltage regulator modules. A control strategy based on the Oxford aging dataset is proposed with DOVV as the equalization variable, and a fuzzy logic control algorithm is introduced according to the distribution characteristics of DOVV data. This equalization control strategy overcomes the pseudo-equalization phenomenon due to battery aging. The simulation results show that compared with the traditional DC–DC energy transfer equalization topology, the energy transfer efficiency of the proposed equalization topology is improved by 62.15% and the equalization time is reduced by about 16.36%, and the pseudo-equalization phenomenon caused by the aging of the battery pack during the equalization process is well overcome. The feasibility of the proposed equalization scheme is verified.

References

1.
Ma
,
H.
,
Deng
,
Y.
,
Liu
,
W. W.
,
Li
,
T.
, and
Zhang
,
H.
,
2022
, “
State of Health Estimation of Retired Battery for Echelon Utilization Based on Charging Curve
,”
Procedia CIRP
,
105
, pp.
458
463
.
2.
Lee
,
S. W.
,
Lee
,
K. M.
,
Choi
,
Y. G.
, and
Kang
,
B.
,
2018
, “
Modularized Design of Active Charge Equalizer for Li-Ion Battery Pack
,”
IEEE Trans. Ind. Electron.
,
65
(
11
), pp.
8697
8706
.
3.
Lu
,
L.
,
Han
,
X.
,
Li
,
J.
,
Hua
,
J.
, and
Ouyang
,
M.
,
2013
, “
A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles
,”
J. Power Sources
,
226
(
3
), pp.
272
288
.
4.
Zhang
,
C.
,
Jiang
,
Y.
,
Jiang
,
J.
,
Cheng
,
G.
,
Diao
,
W.
, and
Zhang
,
W.
,
2017
, “
Study on Battery Pack Consistency Evolutions and Equilibrium Diagnosis for Serial-Connected Lithium-Ion Batteries
,”
Appl. Energy
,
207
(
12
), pp.
510
519
.
5.
Feng
,
F.
,
Hu
,
X.
,
Liu
,
J.
,
Lin
,
X.
, and
Liu
,
B.
,
2019
, “
A Review of Equalization Strategies for Series Battery Packs: Variables, Objectives, and Algorithms
,”
Renew. Sustain. Energy Rev.
,
116
(
12
), p.
109464
.
6.
Tian
,
J.
,
Wang
,
Y.
,
Liu
,
C.
, and
Chen
,
Z.
,
2020
, “
Consistency Evaluation and Cluster Analysis for Lithium-Ion Battery Pack in Electric Vehicles
,”
Energy
,
194
(
3
), p.
116944
.
7.
Zhong
,
L.
,
Zhang
,
C.
,
He
,
Y.
, and
Chen
,
Z.
,
2014
, “
A Method for the Estimation of the Battery Pack State of Charge Based on In-Pack Cells Uniformity Analysis
,”
Appl. Energy
,
113
(
1
), pp.
558
564
.
8.
Liao
,
L.
, and
Chen
,
H.
,
2022
, “
Research on Two-Stage Equalization Strategy Based on Fuzzy Logic Control for Lithium-Ion Battery Packs
,”
J. Energy Storage
,
50
(
6
), p.
104321
.
9.
Zheng
,
Y.
,
Ouyang
,
M.
,
Lu
,
L.
,
Li
,
J.
,
Han
,
X.
, and
Xu
,
L.
,
2014
, “
On-Line Equalization for Lithium-Ion Battery Packs Based on Charging Cell Voltages: Part 1. Equalization Based on Remaining Charging Capacity Estimation
,”
J. Power Sources
,
247
(
2
), pp.
676
686
.
10.
Wu
,
T.
,
Qi
,
Y.
,
Liao
,
L.
,
Ji
,
F.
, and
Chen
,
H.
,
2021
, “
Research on Equalization Strategy of Lithium-Ion Batteries Based on Fuzzy Logic Control
,”
J. Energy Storage
,
40
(
2
), p.
102722
.
11.
Liang
,
J.
,
Gan
,
Y.
,
Tan
,
M.
, and
Li
,
Y.
,
2020
, “
Multilayer Electrochemical-Thermal Coupled Modeling of Unbalanced Discharging in a Serially Connected Lithium-Ion Battery Module
,”
Energy
,
209
(
10
), p.
118429
.
12.
Saeed
,
A.
,
Karimi
,
N.
, and
Paul
,
M. C.
,
2021
, “
Analysis of the Unsteady Thermal Response of a Li-Ion Battery Pack to Dynamic Loads
,”
Energy
,
231
(
5
), p.
120947
.
13.
Shang
,
Y.
,
Xia
,
B.
,
Zhang
,
C.
,
Cui
,
N.
,
Yang
,
J.
, and
Mi
,
C. C.
,
2017
, “
An Automatic Equalizer Based on Forward-Flyback Converter for Series-Connected Battery Strings
,”
IEEE Trans. Ind. Electron.
,
64
(
7
), pp.
5380
5391
.
14.
Liu
,
K.
,
Yang
,
Z.
,
Tang
,
X.
, and
Cao
,
W.
,
2020
, “
Automotive Battery Equalizers Based on Joint Switched-Capacitor and Buck-Boost Converters
,”
IEEE Trans. Veh. Technol.
,
69
(
11
), pp.
12716
12724
.
15.
Farzan Moghaddam
,
A.
, and
Van den Bossche
,
A.
,
2019
, “
A UK Converter Cell Balancing Technique by Using Coupled Inductors for Lithium-Based Batteries
,”
Energies
,
12
(
15
), p.
2881
.
16.
Du
,
J.
,
Wang
,
Y.
,
Tripathi
,
A.
, and
Lam
,
J. S. L.
,
2017
, “
Li-Ion Battery Cell Equalization by Modules With Chain Structure Switched Capacitors
,”
Asian Conference on Energy, Power and Transportation Electrification (ACEPT)
,
Singapore
,
Oct. 24–26
, IEEE, pp.
1
6
.
17.
Schaef
,
C.
,
Din
,
E.
, and
Stauth
,
J. T.
,
2017
, “
A Hybrid Switched-Capacitor Battery Management IC With Embedded Diagnostics for Series-Stacked Li-Ion Arrays
,”
IEEE J. Solid-State Circuits
,
52
(
12
), pp.
3142
3154
.
18.
Ding
,
X.
,
Zhang
,
D.
,
Cheng
,
J
, et al
,
2020
, “
A Novel Active Equalization Topology for Series-Connected Lithium-Ion Battery Packs
,”
IEEE Trans. on Ind. Applicat.
,
56
, pp.
6892
6903
.
19.
Ci
,
S.
,
Lin
,
N.
, and
Wu
,
D.
,
2016
, “
Reconfigurable Battery Techniques and Systems: A Survey
,”
IEEE Access
,
4
(
3
), pp.
1175
1189
.
20.
Riczu
,
C.
, and
Bauman
,
J.
,
2021
, “
Implementation and System-Level Modeling of a Hardware Efficient Cell Balancing Circuit for Electric Vehicle Range Extension
,”
IEEE Trans. Ind. Appl.
,
57
(
3
), pp.
2883
2895
.
21.
Gunlu
,
G.
,
2017
, “
Dynamically Reconfigurable Independent Cellular Switching Circuits for Managing Battery Modules
,”
IEEE Trans. Energy Convers.
,
32
(
1
), pp.
194
201
.
22.
Ji
,
F.
,
Liao
,
L.
,
Wu
,
T.
,
Chang
,
C.
, and
Wang
,
M.
,
2020
, “
Self-Reconfiguration Batteries With Stable Voltage During the Full Cycle Without the DC–DC Converter
,”
J. Energy Storage
,
28
(
2
), p.
101213
.
23.
Yang
,
Y.-D.
,
Hu
,
K.-Y.
, and
Tsai
,
C.-H.
,
2020
, “
Digital Battery Management Design for Point-of-Load Applications With Cell Balancing
,”
IEEE Trans. Ind. Electron.
,
67
(
8
), pp.
6365
6375
.
24.
Das
,
U. K.
,
Shrivastava
,
P.
,
Tey
,
K. S.
,
Idris
,
M. Y. I. B.
,
Mekhilef
,
S.
,
Jamei
,
E.
,
Seyedmahmoudian
,
M.
, and
Stojcevski
,
A.
,
2020
, “
Advancement of Lithium-Ion Battery Cells Voltage Equalization Techniques: A Review
,”
Renew. Sustain. Energy Rev.
,
134
(
12
), p.
110227
.
25.
Koseoglou
,
M.
,
Tsioumas
,
E.
,
Jabbour
,
N.
, and
Mademlis
,
C.
,
2020
, “
Highly Effective Cell Equalization in a Lithium-Ion Battery Management System
,”
IEEE Trans. Power Electron.
,
35
(
2
), pp.
2088
2099
.
26.
Hasan
,
M. K.
,
Habib
,
A. A.
,
Islam
,
S.
,
Ghani
,
A. T. A.
, and
Hossain
,
E.
,
2020
, “
Resonant Energy Carrier Base Active Charge-Balancing Algorithm
,”
Electronics
,
9
(
12
), p.
2166
.
27.
Lyu
,
C.
,
Song
,
Y.
,
Wang
,
L.
,
Li
,
J.
,
Zhang
,
B.
, and
Liu
,
E.
,
2019
, “
A New Method for Lithium-Ion Battery Uniformity Sorting Based on Internal Criteria
,”
J. Energy Storage
,
25
(
10
), p.
100885
.
28.
Wang
,
S.
,
Shang
,
L.
,
Li
,
Z.
,
Deng
,
H.
, and
Li
,
J.
,
2016
, “
Online Dynamic Equalization Adjustment of High-Power Lithium-Ion Battery Packs Based on the State of Balance Estimation
,”
Appl. Energy
,
166
(
3
), pp.
44
58
.
29.
Lin
,
Y.
,
Xu
,
X.
,
Wang
,
F.
, and
Xu
,
Q.
,
2020
, “
Active Equalization Control Strategy of Li-Ion Battery Based on State of Charge Estimation of an Electrochemical-Thermal Coupling Model
,”
Int. J. Energy Res.
,
44
(
5
), pp.
3778
3789
.
30.
Xiong
,
R.
,
Pan
,
Y.
,
Shen
,
W.
,
Li
,
H.
, and
Sun
,
F.
,
2020
, “
Lithium-Ion Battery Aging Mechanisms and Diagnosis Method for Automotive Applications: Recent Advances and Perspectives
,”
Renew. Sustain. Energy Rev.
,
131
(
10
), p.
110048
.
31.
Muduli
,
U. R.
,
Al Jaafari
,
K.
,
Al Hosani
,
K.
,
Behera
,
R. K.
,
Khusnutdinov
,
R. R.
, and
Safin
,
A. R.
,
2021
, “
Cell Balancing of Li-Ion Battery Pack With Adaptive Generalised Extended State Observers for Electric Vehicle Applications
,”
IEEE Energy Conversion Congress and Exposition (ECCE)
,
Vancouver, BC, Canada
,
Oct. 10–14
, pp.
143
147
.
32.
Zhang
,
Y.
,
Li
,
Y.
,
Tao
,
Y.
,
Ye
,
J.
,
Pan
,
A.
,
Li
,
X.
,
Liao
,
Q.
, and
Wang
,
Z.
,
2019
, “
Performance Assessment of Retired EV Battery Modules for Echelon Use
,”
Energy
,
193
(
2
), p.
116555
.
33.
Birkl
,
C.
,
2017
,
Oxford Battery Degradation Dataset 1
,
University of Oxford
,
Oxford, UK
.
You do not currently have access to this content.