Abstract

An environmental-friendly supercapacitor based on aqueous electrolyte was fabricated. Electrodes with conductive spider nest–shaped three-dimensional (3D) porous structures were prepared for the assembly of symmetric supercapacitors. The nickel foam was modified by multiwalled carbon nanotubes and β-cyclodextrin. The construction of the spider nest was stabilized via the chemical bond inside carbon nanotubes, π–π stack effects among carbon nanotubes, and physical adsorption between nickel foam and carbon nanotubes substrate. The role of β-cyclodextrin is a dispersant to prevent agglomeration of carbon nanotubes, thereby enhancing electroactive surface area of nickel foam and improving the specific capacitance of the electrodes. Furthermore, the electrodes exhibited excellent rate capability. The obtained symmetrical supercapacitors exhibited an excellent power density of 17,561.3 W kg−1, a good specific capacitance of 398.8 F g−1, and an energy density of 154.8 Wh kg−1 for 4000 cycles with outstanding cycling stability. In addition, the specific capacitance, energy density, and power density of the supercapacitor operating in seawater were found to be 100.2 F g−1, 17.8 Wh kg−1, and 2568 Wh kg−1, respectively, for 3000 cycles. Overall, our findings indicate that the supercapacitor could stably operate in seawater and shows potential for use as an ecofriendly power supply to marine engineering equipment.

References

1.
Canever
,
N.
,
Chen
,
X.
,
Wojcik
,
M.
,
Zhang
,
H.
,
Dai
,
X.
,
Dubois
,
M.
, and
Nann
,
T.
,
2022
, “
Graphite-Mediated Microwave-Exfoliated Graphene Fluoride as Supercapacitor Electrodes
,”
Nanomaterials
,
12
(
11
), p.
1796
.
2.
Abuelftooh
,
A. M.
,
Tantawy
,
N. S.
,
Mahmouad
,
S. S.
,
Shoeib
,
M. A.
, and
Mohamed
,
S. G.
,
2021
, “
High Specific Energy Supercapacitor Electrode Prepared From MnS/Ni3S2 Composite Grown on Nickel Foam
,”
New J. Chem.
,
45
(
39
), pp.
18641
18650
.
3.
Jeong
,
H. T.
,
2019
, “
Electrochemical Performances of Semi-Transparent and Stretchable Supercapacitor Composed of Nanocarbon Materials
,”
Carbon Lett.
,
30
(
1
), pp.
55
61
.
4.
Zhu
,
P.
,
Lian
,
J.
, and
Liu
,
Y.
,
2022
, “
Optimization of the Electrodeposition Process of a Polypyrrole/Multi-Walled Carbon Nanotube Fiber Electrode for a Flexible Supercapacitor
,”
RSC Adv.
,
12
(
28
), pp.
18134
18143
.
5.
Nguyen
,
V. T.
, and
Ting
,
J.-M.
,
2020
, “
A Redox-Additive Electrolyte and Nanostructured Electrode for Enhanced Supercapacitor Energy Density
,”
ACS Sustain. Chem. Eng.
,
8
(
49
), pp.
18023
18033
.
6.
Vimuna
,
V. M.
,
Athira
,
A. R.
,
Dinesh Babu
,
K. V.
, and
Xavier
,
T. S.
,
2020
, “
Simultaneous Stirring and Microwave Assisted Synthesis of Nanoflakes MnO2/rGO Composite Electrode Material for Symmetric Supercapacitor With Enhanced Electrochemical Performance
,”
Diamond Relat. Mater.
,
110
, p.
108129
.
7.
Bo
,
Z.
,
Kong
,
J.
,
Yang
,
H.
,
Zheng
,
Z.
,
Chen
,
P.
,
Yan
,
J.
, and
Cen
,
K.
,
2022
, “
Ultra-Low-Temperature Supercapacitor Based on Holey Graphene and Mixed-Solvent Organic Electrolyte
,”
Acta Phys. Chim. Sin.
,
38
(
4
), p.
2005054
.
8.
Hillier
,
N.
,
Yong
,
S.
,
Cruden
,
A.
, and
Beeby
,
S.
,
2021
, “
Acetonitrile-Free Organic Electrolyte for Textile Supercapacitor Applications
,”
J. Electrochem. Soc.
,
168
(
8
), p.
080520
.
9.
Reece
,
R.
,
Lekakou
,
C.
, and
Smith
,
P. A.
,
2020
, “
A High-Performance Structural Supercapacitor
,”
ACS Appl. Mater. Interfaces
,
12
(
23
), pp.
25683
25692
.
10.
Pujari
,
R. B.
,
Lokhande
,
A. C.
,
Shelke
,
A. R.
,
Kale
,
S. B.
,
Lee
,
D.-W.
, and
Lokhande
,
C. D.
,
2021
, “
MnS2/Carbon Nanotube Electrode for Improved Supercapacitor Performance
,”
Solid State Sci.
,
111
, p.
106449
.
11.
Jayachandran
,
M.
,
Babu
,
S. K.
,
Maiyalagan
,
T.
,
Kannan
,
M. R.
,
Kumar
,
R. G.
,
Sherlin
,
Y. S.
, and
Vijayakumar
,
T.
,
2021
, “
Effect of Various Aqueous Electrolytes on the Electrochemical Performance of Porous NiO Nanocrystals as Electrode Material for Supercapacitor Applications
,”
Mater. Lett.
,
302
, p.
130415
.
12.
Li
,
W.
,
Jiang
,
Z.
,
Lu
,
M.
,
Long
,
W.
,
Xing
,
F.
, and
Liu
,
J.
,
2021
, “
Effects of Seawater, NaCl, and Na2SO4 Solution Mixing on Hydration Process of Cement Paste
,”
J. Mater. Civ. Eng.
,
33
(
5
), p.
04021057
.
13.
Tang
,
C.
,
Li
,
M.
,
Du
,
J.
,
Wang
,
Y.
,
Zhang
,
Y.
,
Wang
,
G.
,
Shi
,
X.
,
Liu
,
J.
,
Lian
,
C.
,
Li
,
L.
, and
Li
,
Y.
,
2022
, “
Supramolecular-Induced 2.40 V 130 Degrees C Working-Temperature-Range Supercapacitor Aqueous Electrolyte of Lithium Bis (Trifluoromethanesulfonyl) Imide in Dimethyl Sulfoxide-Water
,”
J. Colloid Interface Sci.
,
608
, pp.
1162
1172
.
14.
Chebil
,
A.
,
Kuzgun
,
O.
,
Dridi
,
C.
, and
Ates
,
M.
,
2020
, “
High Power Density Supercapacitor Devices Based on Nickel Foam-Coated rGO/MnCo2O4 Nanocomposites
,”
Ionics
,
26
(
11
), pp.
5725
5735
.
15.
Tao
,
B. R.
,
He
,
J. L.
,
Miao
,
F. J.
, and
Zhang
,
Y.
,
2022
, “
MnO2/NiCo2O4 Loaded on Nickel Foam as a High-Performance Electrode for Advanced Asymmetric Supercapacitor
,”
Vacuum
,
195
, p.
110668
.
16.
Hui
,
Y.
,
Wang
,
H.
,
Zuo
,
W.
, and
Ma
,
X.
,
2022
, “
Spider Nest Shaped Multi-Scale Three-Dimensional Enzymatic Electrodes for Glucose/Oxygen Biofuel Cells
,”
Int. J. Hydrogen Energy
,
47
(
9
), pp.
6187
6199
.
17.
Aswathy
,
N. R.
,
Kumar
,
S. A.
,
Mohanty
,
S.
,
Nayak
,
S. K.
, and
Palai
,
A. K.
,
2021
, “
Polyaniline/Multi-Walled Carbon Nanotubes Filled Biopolymer Based Flexible Substrate Electrodes for Supercapacitor Applications
,”
J. Energy Storage
,
35
, p.
102256
.
18.
Fall
,
B.
,
Diaw
,
A. K. D.
,
Fall
,
M.
,
Sall
,
M. L.
,
Lo
,
M.
,
Gningue-Sall
,
D.
,
Thotiyl
,
M. O.
,
Maria
,
H. J.
,
Kalarikkal
,
N.
, and
Thomas
,
S.
,
2021
, “
Synthesis of Highly Sensitive rGO@CNT@Fe2O3/Polypyrrole Nanocomposite for the Electrochemical Detection of Pb2+
,”
Mater. Today Commun.
,
26
, p.
102005
.
19.
Zhang
,
W.
,
Kong
,
Y.
,
Jin
,
X.
,
Yan
,
B.
,
Diao
,
G.
, and
Piao
,
Y.
,
2020
, “
Supramolecule-Assisted Synthesis of Cyclodextrin Polymer Functionalized Polyaniline/Carbon Nanotube With Core-Shell Nanostructure as High-Performance Supercapacitor Material
,”
Electrochim. Acta
,
331
, p.
135345
.
20.
Li
,
X.
,
Chen
,
W.
, and
Zou
,
C.
,
2020
, “
The Stability, Viscosity and Thermal Conductivity of Carbon Nanotubes Nanofluids With High Particle Concentration: A Surface Modification Approach
,”
Powder Technol.
,
361
, pp.
957
967
.
21.
Bai
,
X.
,
Cao
,
D.
, and
Zhang
,
H.
,
2020
, “
Simultaneously Morphology and Phase Controlled Synthesis of Cobalt Manganese Hydroxides/Reduced Graphene Oxide for High Performance Supercapacitor Electrodes
,”
Ceram. Int.
,
46
(
11
), pp.
19135
19145
.
22.
Zhao
LM
,
He
Z
,
Huang
HR
,
Cheng
YC
,
Yun
BJ
,
2019
, “
Relationship Between the Refractive Index of Seawater and Salinity, Temperature
,”
China Mod. Educ. Equip.
,
321
.
23.
Airong
,
L.
,
Yanmin
,
C.
,
Fengyan
,
G.
,
Zaisheng
,
C.
, and
Juan
,
W.
,
2020
, “
Progress on Fiber-Based Surface-Enhanced Raman Scattering Substrates
,”
Text. Res. J.
,
41
(
5
), pp.
177
183
.
24.
Hui
,
Y.
,
Ma
,
X.
, and
Qu
,
F.
,
2019
, “
Flexible Glucose/Oxygen Enzymatic Biofuel Cells Based on Three-Dimensional Gold-Coated Nickel Foam
,”
J. Solid State Electrochem.
,
23
(
1
), pp.
169
178
.
25.
Liu
,
B.
,
Zhang
,
X.
,
Tian
,
D.
,
Li
,
Q.
,
Zhong
,
M.
,
Chen
,
S.
,
Hu
,
C.
, and
Ji
,
H.
,
2020
, “
In Situ Growth of Oriented Polyaniline Nanorod Arrays on the Graphite Flake for High-Performance Supercapacitors
,”
ACS Omega
,
5
(
50
), pp.
32395
32402
.
26.
Ali
,
G. A. M.
,
2020
, “
Recycled MnO2 Nanoflowers and Graphene Nanosheets for Low-Cost and High Performance Asymmetric Supercapacitor
,”
J. Electron. Mater.
,
49
(
9
), pp.
5411
5421
.
27.
Abraham
,
A. M.
,
Lonkar
,
S. P.
,
Pillai
,
V. V.
, and
Alhassan
,
S. M.
,
2020
, “
Three-Dimensional MoS2 Nanodot-Impregnated Nickel Foam Electrodes for High-Performance Supercapacitor Applications
,”
Acs Omega
,
5
(
20
), pp.
11721
11729
.
28.
Liu
,
H.
,
An
,
S.
,
Han
,
X.
,
Sun
,
X.
,
Cui
,
J.
,
Zhang
,
Y.
, and
He
,
W.
,
2021
, “
3D Heterostructure of 2D Y-Doped Cu(OH)(2) Nanosheet Supported by Nickel Foam as Advanced Electrodes for High Performance Supercapacitor
,”
Vacuum
,
187
, p.
110106
.
29.
Sannasi
,
V.
,
Maheswari
,
K. U.
,
Karthikeyan
,
C.
, and
Karuppuchamy
,
S.
,
2020
, “
H2O2-Assisted Microwave Synthesis of NiO/CNT Nanocomposite Material for Supercapacitor Applications
,”
Ionics
,
26
(
8
), pp.
4067
4079
.
30.
Liu
,
Q.
,
Yang
,
J.
,
Luo
,
X.
,
Miao
,
Y.
,
Zhang
,
Y.
,
Xu
,
W.
,
Yang
,
L.
,
Liang
,
Y.
,
Weng
,
W.
, and
Zhu
,
M.
,
2020
, “
Fabrication of a Fibrous MnO2@MXene/CNT Electrode for High-Performance Flexible Supercapacitor
,”
Ceram. Int.
,
46
(
8
), pp.
11874
11881
.
31.
Dinari
,
M.
,
Allami
,
H.
, and
Momeni
,
M. M.
,
2021
, “
Construction of Ce-Doped NiCo-LDH@CNT Nanocomposite Electrodes for High-Performance Supercapacitor Application
,”
Energy Fuels
,
35
(
2
), pp.
1831
1841
.
32.
Zhang
,
L.
,
Zhang
,
X.
,
Wang
,
J.
,
Seveno
,
D.
,
Fransaer
,
J.
,
Locquet
,
J.-P.
, and
Seo
,
J. W.
,
2021
, “
Carbon Nanotube Fibers Decorated With MnO2 for Wire-Shaped Supercapacitor
,”
Molecules
,
26
(
11
), p.
3479
.
33.
Thillaikkarasi
,
D.
,
Karthikeyan
,
S.
,
Ramesh
,
R.
,
Sengodan
,
P.
,
Kavitha
,
D.
, and
Muthubalasubramanian
,
M.
,
2022
, “
Electrochemical Performance of Various Activated Carbon-Multi-Walled Carbon Nanotubes Symmetric Supercapacitor Electrodes in Aqueous Electrolytes
,”
Carbon Lett.
,
32
(
6
), pp.
1481
1505
.
34.
Park
,
S. K.
,
Sure
,
J.
,
Vishnu
,
D. S. M.
,
Jo
,
S. J.
,
Lee
,
W. C.
,
Ahmad
,
I. A.
, and
Kim
,
H.-K.
,
2021
, “
Nano-Fe3O4/Carbon Nanotubes Composites by One-Pot Microwave Solvothermal Method for Supercapacitor Applications
,”
Energies
,
14
(
10
), p.
2908
.
35.
Basivi
,
P. K.
,
Ramesh
,
S.
,
Kakani
,
V.
,
Yadav
,
H. M.
,
Bathula
,
C.
,
Afsar
,
N.
,
Sivasamy
,
A.
,
Kim
,
H. S.
,
Pasupuleti
,
V. R.
, and
Lee
,
H.
,
2021
, “
Ultrasonication-Mediated Nitrogen-Doped Multiwalled Carbon Nanotubes Involving Carboxy Methylcellulose Composite for Solid-State Supercapacitor Applications
,”
Sci. Rep.
,
11
(
1
), p.
9918
.
36.
Kakani
,
V.
,
Ramesh
,
S.
,
Yadav
,
H. M.
,
Bathula
,
C.
,
Basivi
,
P. K.
,
Palem
,
R. R.
,
Kim
,
H. S.
,
Pasupuletti
,
V. R.
,
Lee
,
H.
, and
Kim
,
H.
,
2022
, “
Hydrothermal Synthesis of CuO@MnO2 on Nitrogen-Doped Multiwalled Carbon Nanotube Composite Electrodes for Supercapacitor Applications
,”
Sci. Rep.
,
12
(
1
), p.
12951
.
37.
Li
,
Z.
,
Xiao
,
D.
,
Xu
,
C.
,
Li
,
Z.
,
Bi
,
S.
,
Xu
,
H.
,
Dou
,
H.
, and
Zhang
,
X.
,
2022
, “
MnO2/Carbon Nanotube Free-Standing Electrode Recycled From Spent Manganese-Oxygen Battery as High-Performance Supercapacitor Material
,”
J. Mater. Sci.
,
57
(
19
), pp.
8818
8827
.
38.
Kshetri
,
T.
,
Duy Thanh
,
T.
,
Dinh Chuong
,
N.
,
Kim
,
N. H.
,
Lau
,
K.-T.
, and
Lee
,
J. H.
,
2020
, “
Ternary Graphene-Carbon Nanofibers-Carbon Nanotubes Structure for Hybrid Supercapacitor
,”
Chem. Eng. J.
,
380
, p.
122543
.
39.
Ali
,
G. A. M.
,
Megiel
,
E.
,
Cieciorski
,
P.
,
Thalji
,
M. R.
,
Romanski
,
J.
,
Algarni
,
H.
, and
Chong
,
K. F.
,
2020
, “
Ferrocene Functionalized Multi-Walled Carbon Nanotubes as Supercapacitor Electrodes
,”
J. Mol. Liq.
,
318
, p.
114064
.
40.
Aftab
,
F.
,
Tanveer
,
S.
,
Rehman
,
S. U.
,
Ghafoor
,
S.
,
Duran
,
H.
,
Kirchhoff
,
K.
,
Lieberwirth
,
I.
, and
Arshad
,
S. N.
,
2020
, “
Encapsulation of Fe/Fe3O4 in Carbon Nanotubes Grown Over Carbon Nanofibers for High Performance Supercapacitor Electrodes
,”
Synth. Met.
,
269
, p.
116575
.
41.
Niu
,
Z.
,
Zhang
,
Y.
,
Zhang
,
Y.
,
Lu
,
X.
, and
Liu
,
J.
,
2020
, “
Enhanced Electrochemical Performance of Three-Dimensional Graphene/Carbon Nanotube Composite for Supercapacitor Application
,”
J. Alloys Compd.
,
820
, p.
153114
.
42.
Ovhal
,
M. M.
,
Kumar
,
N.
,
Hong
,
S.-K.
,
Lee
,
H.-W.
, and
Kang
,
J.-W.
,
2020
, “
Asymmetric Supercapacitor Featuring Carbon Nanotubes and Nickel Hydroxide Grown on Carbon Fabric: A Study of Self-Discharging Characteristics
,”
J. Alloys Compd.
,
828
, p.
154447
.
43.
Zhang
,
Y.
,
Sun
,
J.
,
Tan
,
J.
,
Ma
,
C.
,
Luo
,
S.
,
Li
,
W.
, and
Liu
,
S.
,
2021
, “
Multi-Walled Carbon Nanotubes/Carbon Foam Nanocomposites Derived From Biomass for CO2 Capture and Supercapacitor Applications
,”
Fuel
,
305
, p.
121622
.
You do not currently have access to this content.