Abstract

Anode materials based on hard carbon are the focus of research in the field of batteries, and bio-hard carbon is one of the most important materials. In this study, we use the invasive species Spartina alterniflora as raw material and doped with nano-graphite to produce high-performance anode materials. It can achieve a first coulomb efficiency of 67%, which is nearly 10% higher than Spartina alterniflora without nano-graphite doped. The specific capacity is close to 300 mA h g−1 under the current of 20 mA g−1. By comparison, we found that the modified Spartina alterniflora has great sodium storage capacity, and the study also proved that Spartina alterniflora material can be modified into a high-performance anode material with high economic value.

References

1.
Armand
,
M.
, and
Tarascon
,
J.-M.
,
2008
, “
Building Better Batteries
,”
Nature
,
451
(
7179
), pp.
652
657
.
2.
Dunn
,
B.
,
Kamath
,
H.
, and
Tarascon
,
J.-M.
,
2011
, “
Electrical Energy Storage for the Grid: A Battery of Choices
,”
Science
,
334
(
6058
), pp.
928
935
.
3.
Yang
,
Z.
,
Zhang
,
J.
,
Kintner-Meyer
,
M. C.
,
Lu
,
X.
,
Choi
,
D.
,
Lemmon
,
J. P.
, and
Liu
,
J.
,
2011
, “
Electrochemical Energy Storage for Green Grid
,”
Chem. Rev.
,
111
(
5
), pp.
3577
3613
.
4.
Ding
,
J.
,
Hu
,
W.
,
Paek
,
E.
, and
Mitlin
,
D.
,
2018
, “
Review of Hybrid Ion Capacitors: From Aqueous to Lithium to Sodium
,”
Chem. Rev.
,
118
(
14
), pp.
6457
6498
.
5.
Usiskin
,
R.
,
Lu
,
Y.
,
Popovic
,
J.
,
Law
,
M.
,
Balaya
,
P.
,
Hu
,
Y.-S.
, and
Maier
,
J.
,
2021
, “
Fundamentals, Status and Promise of Sodium-Based Batteries
,”
Nat. Rev. Mater.
,
6
(
11
), pp.
1020
1035
.
6.
Slater
,
M. D.
,
Kim
,
D.
,
Lee
,
E.
, and
Johnson
,
C. S.
,
2013
, “
Sodium-Ion Batteries
,”
Adv. Funct. Mater.
,
23
(
8
), pp.
947
958
.
7.
Delmas
,
C.
,
2018
, “
Sodium and Sodium-Ion Batteries: 50 Years of Research
,”
Adv. Energy Mater.
,
8
(
17
), p.
1703137
.
8.
Yabuuchi
,
N.
,
Kubota
,
K.
,
Dahbi
,
M.
, and
Komaba
,
S.
,
2014
, “
Research Development on Sodium-Ion Batteries
,”
Chem. Rev.
,
114
(
23
), pp.
11636
11682
.
9.
Hwang
,
J. Y.
,
Myung
,
S. T.
, and
Sun
,
Y. K.
,
2017
, “
Sodium-Ion Batteries: Present and Future
,”
Chem. Soc. Rev.
,
46
(
12
), pp.
3529
3614
.
10.
Chang
,
G.
,
Zhao
,
Y.
,
Dong
,
L.
,
Wilkinson
,
D. P.
,
Zhang
,
L.
,
Shao
,
Q.
,
Yan
,
W.
,
Sun
,
X.
, and
Zhang
,
J.
,
2020
, “
A Review of Phosphorus and Phosphides as Anode Materials for Advanced Sodium-Ion Batteries
,”
J. Mater. Chem. A
,
8
(
10
), pp.
4996
5048
.
11.
Chayambuka
,
K.
,
Mulder
,
G.
,
Danilov
,
D. L.
, and
Notten
,
P. H. L.
,
2018
, “
Sodium-Ion Battery Materials and Electrochemical Properties Reviewed
,”
Adv. Energy Mater.
,
8
(
16
), p.
1800079
.
12.
Zeng
,
L.
,
Huang
,
L.
,
Zhu
,
J.
,
Li
,
P.
,
Chu
,
P. K.
,
Wang
,
J.
, and
Yu
,
X. F.
,
2022
, “
Phosphorus-Based Materials for High-Performance Alkaline Metal Ion Batteries: Progress and Prospect
,”
Small
,
18
(
39
), p.
e2201808
.
13.
Wu
,
X.
,
Lan
,
X.
,
Hu
,
R.
,
Yao
,
Y.
,
Yu
,
Y.
, and
Zhu
,
M.
,
2022
, “
Tin-Based Anode Materials for Stable Sodium Storage: Progress and Perspective
,”
Adv. Mater.
,
34
(
7
), p.
e2106895
.
14.
Zhou
,
X.
,
Yu
,
L.
, and
Lou
,
X. W. D.
,
2016
, “
Formation of Uniform N-Doped Carbon-Coated SnO2 Submicroboxes With Enhanced Lithium Storage Properties
,”
Adv. Energy Mater.
,
6
(
14
), p.
1600451
.
15.
Li
,
Q.
,
Zhang
,
Z.
,
Dong
,
S.
,
Li
,
C.
,
Ge
,
X.
,
Li
,
Z.
,
Ma
,
J.
, and
Yin
,
L.
,
2017
, “
Ge Nanoparticles Encapsulated in Interconnected Hollow Carbon Boxes as Anodes for Sodium Ion and Lithium Ion Batteries With Enhanced Electrochemical Performance
,”
Part. Part. Syst. Charact.
,
34
(
3
), p.
1600115
.
16.
Dou
,
X.
,
Hasa
,
I.
,
Saurel
,
D.
,
Vaalma
,
C.
,
Wu
,
L.
,
Buchholz
,
D.
,
Bresser
,
D.
,
Komaba
,
S.
, and
Passerini
,
S.
,
2019
, “
Hard Carbons for Sodium-Ion Batteries: Structure, Analysis, Sustainability, and Electrochemistry
,”
Mater. Today
,
23
, pp.
87
104
.
17.
Stevens
,
D. A.
, and
Dahn
,
J. R.
,
2000
, “
High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries
,”
J. Electrochem. Soc.
,
147
(
4
), pp.
1271
1273
.
18.
Teng
,
Y.
,
Mo
,
M.
, and
Li
,
Y.
,
2018
, “
Microtubular Hard Carbon Derived From Willow Catkins as an Anode Material With Enhanced Performance for Sodium-Ion Batteries
,”
ASME J. Electrochem. Energy Convers. Storage
,
15
(
4
), p.
041010
.
19.
Wang
,
H. G.
, and
Zhang
,
X. B.
,
2018
, “
Organic Carbonyl Compounds for Sodium-Ion Batteries: Recent Progress and Future Perspectives
,”
Chemistry
,
24
(
69
), pp.
18235
18245
.
20.
Li
,
Y.
,
Hu
,
Y.-S.
,
Titirici
,
M.-M.
,
Chen
,
L.
, and
Huang
,
X.
,
2016
, “
Hard Carbon Microtubes Made From Renewable Cotton as High-Performance Anode Material for Sodium-Ion Batteries
,”
Adv. Energy Mater.
,
6
(
18
), p.
1600659
.
21.
Zhao
,
X.
,
Ding
,
Y.
,
Xu
,
Q.
,
Yu
,
X.
,
Liu
,
Y.
, and
Shen
,
H.
,
2019
, “
Low-Temperature Growth of Hard Carbon With Graphite Crystal for Sodium-Ion Storage With High Initial Coulombic Efficiency: A General Method
,”
Adv. Energy Mater.
,
9
(
10
), p.
1803648
.
22.
Teal
,
J. M.
, and
Kanwisher
,
J. W.
,
1965
, “
Gas Transport in the Marsh Grass, Spartina Alterniflora
,”
J. Exp. Bot.
,
17
(
51
), pp.
355
361
.
23.
Cheng
,
H.
,
Tang
,
Z.
,
Luo
,
X.
, and
Zheng
,
Z.
,
2021
, “
Spartina Alterniflora-Derived Porous Carbon Using as Anode Material for Sodium-Ion Battery
,”
Sci. Total Environ.
,
777
, p.
146120
.
24.
Simberloff
,
D.
,
Martin
,
J. L.
,
Genovesi
,
P.
,
Maris
,
V.
,
Wardle
,
D. A.
,
Aronson
,
J.
,
Courchamp
,
F.
,
Galil
,
B.
,
García-Berthou
,
E.
,
Pascal
,
M.
,
Pyšek
,
P.
,
Sousa
,
R.
,
Tabacchi
,
E.
, and
Vilà
,
M.
,
2013
, “
Impacts of Biological Invasions: What’s What and the Way Forward
,”
Trends Ecol. Evol.
,
28
(
1
), pp.
58
66
.
25.
Yang
,
K.
,
Gao
,
Q.
,
Tan
,
Y.
,
Tian
,
W.
,
Qian
,
W.
,
Zhu
,
L.
, and
Yang
,
C.
,
2016
, “
Biomass-Derived Porous Carbon With Micropores and Small Mesopores for High-Performance Lithium-Sulfur Batteries
,”
Chem. Eur. J.
,
22
(
10
), pp.
3239
3244
.
26.
Li
,
Y.
,
Mu
,
L.
,
Hu
,
Y.-S.
,
Li
,
H.
,
Chen
,
L.
, and
Huang
,
X.
,
2016
, “
Pitch-Derived Amorphous Carbon as High Performance Anode for Sodium-Ion Batteries
,”
Energy Storage Mater.
,
2
, pp.
139
145
.
27.
Katsuyama
,
Y.
,
Nakayasu
,
Y.
,
Kobayashi
,
H.
,
Goto
,
Y.
,
Honma
,
I.
, and
Watanabe
,
M.
,
2020
, “
Rational Route for Increasing Intercalation Capacity of Hard Carbons as Sodium-Ion Battery Anodes
,”
Chemsuschem
,
13
(
21
), pp.
1
8
.
28.
Gaddam
,
R. R.
,
Farokh Niaei
,
A. H.
,
Hankel
,
M.
,
Searles
,
D. J.
,
Kumar
,
N. A.
, and
Zhao
,
X. S.
,
2017
, “
Capacitance-Enhanced Sodium-Ion Storage in Nitrogen-Rich Hard Carbon
,”
J. Mater. Chem. A
,
5
(
42
), pp.
22186
22192
.
29.
Malard
,
L. M.
,
Pimenta
,
M. A.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M. S.
,
2009
, “
Raman Spectroscopy in Graphene
,”
Phys. Rep.
,
473
(
5–6
), pp.
51
87
.
30.
Lu
,
M. W.
,
Huang
,
Y.
, and
Chen
,
C.
,
2020
, “
Cedarwood Bark-Derived Hard Carbon as an Anode for High-Performance Sodium-Ion Batteries
,”
Energy Fuels
,
34
(
9
), pp.
11489
11497
.
31.
Luo
,
W.
,
Bommier
,
C.
,
Jian
,
Z.
,
Li
,
X.
,
Carter
,
R.
,
Vail
,
S.
,
Lu
,
Y.
,
Lee
,
J. J.
, and
Ji
,
X.
,
2015
, “
Low-Surface-Area Hard Carbon Anode for Na-Ion Batteries Via Graphene Oxide as a Dehydration Agent
,”
ACS Appl. Mater. Interfaces
,
7
(
4
), pp.
2626
2631
.
32.
Zhao
,
G.
,
Yu
,
D.
,
Zhang
,
H.
,
Sun
,
F.
,
Li
,
J.
,
Zhu
,
L.
,
Sun
,
L.
,
Yu
,
M.
,
Besenbacher
,
F.
, and
Sun
,
Y.
,
2020
, “
Sulphur-Doped Carbon Nanosheets Derived From Biomass as High-Performance Anode Materials for Sodium-Ion Batteries
,”
Nano Energy
,
67
, p.
104219
.
33.
Selvamani
,
V.
,
Ravikumar
,
R.
,
Suryanarayanan
,
V.
,
Velayutham
,
D.
, and
Gopukumar
,
S.
,
2016
, “
Garlic Peel Derived High Capacity Hierarchical N-Doped Porous Carbon Anode for Sodium/Lithium Ion Cell
,”
Electrochim. Acta
,
190
, pp.
337
345
.
34.
Yin
,
X.
,
Zhao
,
Y.
,
Wang
,
X.
,
Feng
,
X.
,
Lu
,
Z.
,
Li
,
Y.
,
Long
,
H.
,
Wang
,
J.
,
Ning
,
J.
, and
Zhang
,
J.
,
2022
, “
Modulating the Graphitic Domains of Hard Carbons Derived From Mixed Pitch and Resin to Achieve High Rate and Stable Sodium Storage
,”
Small
,
18
(
5
), p.
e2105568
.
35.
Jin
,
J.
,
Shi
,
Z.-Q.
, and
Wang
,
C.-Y.
,
2014
, “
The Structure and Electrochemical Properties of Carbonized Polyacrylonitrile Microspheres
,”
Solid State Ion
,
261
, pp.
5
10
.
36.
Chen
,
X.
,
Tian
,
J.
,
Li
,
P.
,
Fang
,
Y.
,
Fang
,
Y.
,
Liang
,
X.
,
Feng
,
J.
, et al
,
2022
, “
An Overall Understanding of Sodium Storage Behaviors in Hard Carbons by an “Adsorption-Intercalation/Filling” Hybrid Mechanism
,”
Adv. Energy Mater.
,
12
(
24
), p.
2200886
.
37.
Liu
,
Y.
,
Merinov
,
B. V.
, and
Goddard
,
W. A.
, 3rd
,
2016
, “
Origin of Low Sodium Capacity in Graphite and Generally Weak Substrate Binding of Na and Mg Among Alkali and Alkaline Earth Metals
,”
Proc. Natl. Acad. Sci. U.S.A.
,
113
(
14
), pp.
3735
3739
.
38.
Jiang
,
Q.
,
Zhang
,
Z.
,
Yin
,
S.
,
Guo
,
Z.
,
Wang
,
S.
, and
Feng
,
C.
,
2016
, “
Biomass Carbon Micro/Nano-Structures Derived From Ramie Fibers and Corncobs as Anode Materials for Lithium-Ion and Sodium-Ion Batteries
,”
Appl. Surf. Sci.
,
379
, pp.
73
82
.
39.
Liu
,
Z.
,
Zhang
,
L.
,
Sheng
,
L.
,
Zhou
,
Q.
,
Wei
,
T.
,
Feng
,
J.
, and
Fan
,
Z.
,
2018
, “
Edge-Nitrogen-Rich Carbon Dots Pillared Graphene Blocks With Ultrahigh Volumetric/Gravimetric Capacities and Ultralong Life for Sodium-Ion Storage
,”
Adv. Energy Mater.
,
8
(
30
), p.
1802042
.
40.
Chen
,
C.
,
Wang
,
Z.
,
Zhang
,
B.
,
Miao
,
L.
,
Cai
,
J.
,
Peng
,
L.
,
Huang
,
Y.
, et al
,
2017
, “
Nitrogen-Rich Hard Carbon as a Highly Durable Anode for High-Power Potassium-Ion Batteries
,”
Energy Storage Mater.
,
8
, pp.
161
168
.
41.
Hou
,
H.
,
Dai
,
Z.
,
Liu
,
X.
,
Yao
,
Y.
,
Liao
,
Q.
,
Yu
,
C.
, and
Li
,
D.
,
2018
, “
Reutilization of the Expired Tetracycline for Lithium Ion Battery Anode
,”
Sci. Total Environ.
,
630
, pp.
495
501
.
42.
Augustyn
,
V.
,
Come
,
J.
,
Lowe
,
M. A.
,
Kim
,
J. W.
,
Taberna
,
P. L.
,
Tolbert
,
S. H.
,
Abruna
,
H. D.
,
Simon
,
P.
, and
Dunn
,
B.
,
2013
, “
High-Rate Electrochemical Energy Storage Through Li+ Intercalation Pseudocapacitance
,”
Nat. Mater.
,
12
(
6
), pp.
518
522
.
43.
Huang
,
M.
,
Mi
,
K.
,
Zhang
,
J.
,
Liu
,
H.
,
Yu
,
T.
,
Yuan
,
A.
,
Kong
,
Q.
, and
Xiong
,
S.
,
2017
, “
MOF-Derived Bi-Metal Embedded N-Doped Carbon Polyhedral Nanocages With Enhanced Lithium Storage
,”
J. Mater. Chem. A
,
5
(
1
), pp.
266
274
.
44.
Xue
,
Y. C.
,
Gao
,
M. Y.
,
Wu
,
M. R.
,
Su
,
D. Q.
,
Guo
,
X. M.
,
Shi
,
J.
,
Duan
,
M. T.
,
Chen
,
J. L.
,
Zhang
,
J. H.
, and
Kong
,
Q. H.
,
2020
, “
A Promising Hard Carbon-Soft Carbon Composite Anode With Boosting Sodium Storage Performance
,”
ChemElectroChem
,
7
(
19
), pp.
4010
4015
.
45.
Shaju
,
K. M.
,
Subba Rao
,
G. V.
, and
Chowdari
,
B. V. R.
,
2004
, “
Influence of Li-Ion Kinetics in the Cathodic Performance of Layered Li(Ni[sub 1/3]Co[sub 1/3]Mn[sub 1/3])O[sub 2]
,”
J. Electrochem. Soc.
,
151
(
9
), p.
A1324
.
You do not currently have access to this content.