Abstract

Temperature is a critical factor affecting the performance and safety of battery packs of electric vehicles (EVs). The design of liquid cooling plates based on mini-channels has always been the research hotspots of battery thermal management systems (BTMS). This paper investigates the effect of adding vortex generators (VGs) to the liquid cooling channel on the heat dissipation capacity and temperature uniformity of the battery. The shape of the vortex generators (triangle, trapezoid, and semicircle), placement position (middle, inlet, and outlet of the channel), different flowrates, and different numbers of channels on the heat dissipation of the battery are systematically analyzed. The research results indicate that (1) compared to the triangular and trapezoidal vortex generators, the semicircular vortex generators have a lower cost in terms of pressure drop while maintaining the same heat dissipation efficiency. The pressure drop of the semicircular vortex generators is 15.89% less than that of the trapezoidal vortex generators and 20.49% less than that of the triangular vortex generators. (2) The effect of adding vortex generators is more obvious when the flowrate is small in the cooling channels. When the flow velocity is 0.025 m/s, the heat dissipation performance can be increased by 7.4%. (3) When the cross-sectional area of the inlet is fixed, the heat dissipation effect of more channels is better. The average temperature of three and seven cooling channels decreases from 311.23 K to 310.07 K, with a decrease of 8.87%. (4) The temperature difference can be effectively reduced when the vortex generators are concentrated near the outlet of the flow outlet. Its temperature difference is 1.8 K lower than that when the vortex generators are placed near the inlet, with a decrease of 10.5%.

References

1.
Li
,
Y. S.
,
Garg
,
A.
,
Shevya
,
S.
,
Li
,
W.
,
Gao
,
L.
, and
Lam
,
J. S. L.
,
2022
, “
A Hybrid Convolutional Neural Network-Long Short Term Memory for Discharge Capacity Estimation of Lithium-Ion Batteries
,”
ASME J. Electrochem. Energy Convers. Storage
,
19
(
3
), p.
030901
.
2.
Su
,
S.
,
Li
,
W.
,
Garg
,
A.
, and
Gao
,
L.
,
2022
, “
An Adaptive Boosting Charging Strategy Optimization Based on Thermoelectric-Aging Model, Surrogates and Multi-Objective Optimization
,”
Appl. Energy
,
312
, p.
118795
.
3.
Li
,
W.
,
Peng
,
X.
,
Xiao
,
M.
,
Garg
,
A.
, and
Gao
,
L.
,
2019
, “
Multi-Objective Design Optimization for Mini-Channel Cooling Battery Thermal Management System in an Electric Vehicle
,”
Int. J. Energy Res.
,
43
(
8
), pp.
3668
3680
.
4.
Lin
,
J.
,
Liu
,
X.
,
Li
,
S.
,
Zhang
,
C.
, and
Yang
,
S.
,
2021
, “
A Review on Recent Progress, Challenges and Perspective of Battery Thermal Management System
,”
Int. J. Heat Mass Transfer.
,
167
, p.
120834
.
5.
Lu
,
M.
,
Zhang
,
X.
,
Ji
,
J.
,
Xu
,
X.
, and
Zhang
,
Y.
,
2020
, “
Research Progress on Power Battery Cooling Technology for Electric Vehicles
,”
J. Energy Storage
,
27
, p.
101155
.
6.
Mali
,
V.
,
Saxena
,
R.
,
Kumar
,
K.
,
Kalam
,
A.
, and
Tripathi
,
B.
,
2021
, “
Review on Battery Thermal Management Systems for Energy-Efficient Electric Vehicles
,”
Renewable Sustainable Energy Rev.
,
151
, p.
111611
.
7.
Yang
,
T.
,
Yang
,
N.
,
Zhang
,
X.
, and
Li
,
G.
,
2016
, “
Investigation of the Thermal Performance of Axial-Flow air Cooling for the Lithium-Ion Battery Pack
,”
Int. J. Therm. Sci.
,
108
, pp.
132
144
.
8.
Su
,
S.
,
Li
,
W.
,
Li
,
Y.
,
Garg
,
A.
,
Gao
,
L.
, and
Zhou
,
Q.
,
2021
, “
Multi-Objective Design Optimization of Battery Thermal Management System for Electric Vehicles
,”
Appl. Therm. Eng.
,
196
, p.
117235
.
9.
Kim
,
G.-H.
, and
Pesaran
,
A.
,
2007
, “
Battery Thermal Management Design Modeling
,”
World Electr. Veh. J.
,
1
(
1
), pp.
126
133
.
10.
Sabbah
,
R.
,
Kizilel
,
R.
,
Selman
,
J. R.
, and
Al-Hallaj
,
S.
,
2008
, “
Active (Air-Cooled) vs. Passive (Phase Change Material) Thermal Management of High Power Lithium-Ion Packs: Limitation of Temperature Rise and Uniformity of Temperature Distribution
,”
J. Power Sources
,
182
(
2
), pp.
630
638
.
11.
Li
,
C.
,
Li
,
Y.
,
Gao
,
L.
,
Garg
,
A.
, and
Li
,
W.
,
2021
, “
Surrogate Model-Based Heat Dissipation Optimization of Air-Cooling Battery Packs Involving Herringbone Fins
,”
Int. J. Energ. Res.
,
45
(
6
), pp.
8508
8523
.
12.
Wang
,
N.
,
Li
,
C.
,
Li
,
W.
,
Huang
,
M.
, and
Qi
,
D.
,
2021
, “
Effect Analysis on Performance Enhancement of a Novel Air Cooling Battery Thermal Management System With Spoilers
,”
Appl. Therm. Eng.
,
192
, p.
116932
.
13.
Akbarzadeh
,
M.
,
Jaguemont
,
J.
,
Kalogiannis
,
T.
,
Karimi
,
D.
,
He
,
J.
,
Jin
,
L.
,
Xie
,
P.
,
Van Mierlo
,
J.
, and
Berecibar
,
M.
,
2021
, “
A Novel Liquid Cooling Plate Concept for Thermal Management of Lithium-Ion Batteries in Electric Vehicles
,”
Energy Convers. Manage.
,
231
, p.
113862
.
14.
Rao
,
Z.
,
Wang
,
Q.
, and
Huang
,
C.
,
2016
, “
Investigation of the Thermal Performance of Phase Change Material/Mini-Channel Coupled Battery Thermal Management System
,”
Appl. Energy
,
164
, pp.
659
669
.
15.
Deng
,
T.
,
Ran
,
Y.
,
Yin
,
Y.
,
Chen
,
X.
, and
Liu
,
P.
,
2019
, “
Multi-Objective Optimization Design of Double-Layered Reverting Cooling Plate for Lithium-Ion Batteries
,”
Int. J. Heat Mass Transfer.
,
143
, p.
118580
.
16.
Liu
,
H.
,
Gao
,
X.
,
Zhao
,
J.
,
Yu
,
M.
,
Niu
,
D.
, and
Ji
,
Y.
,
2022
, “
Liquid-Based Battery Thermal Management System Performance Improvement With Intersected Serpentine Channels
,”
Renew. Energy
,
199
, pp.
640
652
.
17.
Yang
,
W.
,
Zhou
,
F.
,
Zhou
,
H.
,
Wang
,
Q.
, and
Kong
,
J.
,
2020
, “
Thermal Performance of Cylindrical Lithium-Ion Battery Thermal Management System Integrated With Mini-Channel Liquid Cooling and Air Cooling
,”
Appl. Therm. Eng.
,
175
, p.
115331
.
18.
Jarrett
,
A.
, and
Kim
,
I. Y.
,
2011
, “
Design Optimization of Electric Vehicle Battery Cooling Plates for Thermal Performance
,”
J. Power Sources
,
196
(
23
), pp.
10359
10368
.
19.
Huo
,
Y.
,
Rao
,
Z.
,
Liu
,
X.
, and
Zhao
,
J.
,
2015
, “
Investigation of Power Battery Thermal Management by Using Mini-Channel Cold Plate
,”
Energ. Convers. Manage.
,
89
, pp.
387
395
.
20.
Fan
,
Y.
,
Wang
,
Z.
,
Fu
,
T.
, and
Wu
,
H.
,
2022
, “
Numerical Investigation on Lithium-Ion Battery Thermal Management Utilizing a Novel Tree-Like Channel Liquid Cooling Plate Exchanger
,”
Int. J. Heat. Mass. Transfer
,
183
, p.
122143
.
21.
Li
,
C.
,
Li
,
Y.
,
Srinivaas
,
S.
,
Zhang
,
J.
,
Qu
,
S.
, and
Li
,
W.
,
2021
, “
Mini-Channel Liquid Cooling System for Improving Heat Transfer Capacity and Thermal Uniformity in Battery Packs for Electric Vehicles
,”
ASME J. Electrochem. Energ. Convers. Storage
,
18
(
3
), p.
030905
.
22.
Kalkan
,
O.
,
Celen
,
A.
, and
Bakirci
,
K.
,
2022
, “
Multi-Objective Optimization of a Mini Channeled Cold Plate for Using Thermal Management of a Li-Ion Battery
,”
Energy
,
251
, p.
123949
.
23.
Wu
,
N.
,
Li
,
X.
,
Ouyang
,
N.
, and
Zhang
,
W.
,
2022
, “
Mini-channel Liquid Cooling System for Large-Sized Lithium-Ion Battery Packs by Integrating Step-Allocated Coolant Scheme
,”
Appl. Therm. Eng.
,
214
, p.
118798
.
24.
Guo
,
R.
, and
Li
,
L.
,
2022
, “
Heat Dissipation Analysis and Optimization of Lithium-Ion Batteries With a Novel Parallel-Spiral Serpentine Channel Liquid Cooling Plate
,”
Int. J. Heat. Mass. Transfer.
,
189
, p.
122706
.
25.
Jaffal
,
H. M.
,
Mahmoud
,
N. S.
,
Imran
,
A. A.
, and
Hasan
,
A.
,
2023
, “
Performance Enhancement of a Novel Serpentine Channel Cooled Plate Used for Cooling of Li-Ion Battery Module
,”
Int. J. Therm. Sci.
,
184
, p.
107955
.
26.
Jin
,
L. W.
,
Lee
,
P. S.
,
Kong
,
X. X.
,
Fan
,
Y.
, and
Chou
,
S. K.
,
2014
, “
Ultra-Thin Minichannel LCP for EV Battery Thermal Management
,”
Appl. Energy
,
113
, pp.
1786
1794
.
27.
Al-Asadi
,
M. T.
,
Alkasmoul
,
F. S.
, and
Wilson
,
M. C. T.
,
2018
, “
Benefits of Spanwise Gaps in Cylindrical Vortex Generators for Conjugate Heat Transfer Enhancement in Micro-Channels
,”
Appl. Therm. Eng.
,
130
, pp.
571
586
.
28.
Raihan
,
M. F. B.
,
Al-Asadi
,
M. T.
, and
Thompson
,
H. M.
,
2021
, “
Management of Conjugate Heat Transfer Using Various Arrangements of Cylindrical Vortex Generators in Micro-Channels
,”
Appl. Therm. Eng.
,
182
, p.
116097
.
29.
Zhao
,
R.
,
Wen
,
D.
,
Lai
,
Z.
,
Li
,
W.
,
Ye
,
M.
,
Zhuge
,
W.
, and
Zhang
,
Y.
,
2021
, “
Performance Analysis and Optimization of a Novel Cooling Plate With Non-Uniform Pin-Fins for Lithium Battery Thermal Management
,”
Appl. Therm. Eng.
,
194
, p.
117022
.
30.
Liu
,
L.
,
Cao
,
Z.
,
Xu
,
C.
,
Zhang
,
L.
, and
Sun
,
T.
,
2022
, “
Investigation of Fluid Flow and Heat Transfer Characteristics in a Microchannel Heat Sink With Double-Layered Staggered Cavities
,”
Int. J. Heat. Mass. Transfer.
,
187
, p.
122535
.
31.
Zhang
,
J.
,
Shao
,
D.
,
Jiang
,
L.
,
Zhang
,
G.
,
Wu
,
H.
,
Day
,
R.
, and
Jiang
,
W.
,
2022
, “
Advanced Thermal Management System Driven by Phase Change Materials for Power Lithium-Ion Batteries: A Review
,”
Renew. Sust. Energ. Rev.
,
159
, p.
112207
.
32.
Feng
,
X.
,
Ouyang
,
M.
,
Liu
,
X.
,
Lu
,
L.
,
Xia
,
Y.
, and
He
,
X.
,
2018
, “
Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review
,”
Energ. Stor. Mater.
,
10
, pp.
246
267
.
33.
Lin
,
C.
,
Xu
,
S.
,
Chang
,
G.
, and
Liu
,
J.
,
2015
, “
Experiment and Simulation of a LiFePO4 Battery Pack With a Passive Thermal Management System Using Composite Phase Change Material and Graphite Sheets
,”
J. Power Sources
,
275
, pp.
742
749
.
34.
Garg
,
A.
,
Yun
,
L.
,
Shaosen
,
S.
,
Goyal
,
A.
,
Niu
,
X.
,
Gao
,
L.
,
Bhalerao
,
Y.
, and
Panda
,
B.
,
2019
, “
A Combined Experimental-Numerical Framework for Residual Energy Determination in Spent Lithium-Ion Battery Packs
,”
Int. J. Energ. Res.
,
43
(
9
), pp.
4390
4402
.
35.
Bernardi
,
D.
,
Pawlikowski
,
E.
, and
Newman
,
J.
,
1985
, “
A General Energy Balance for Battery Systems
,”
J. Electrochem. Soc.
,
132
(
1
), pp.
5
12
.
36.
Sato
,
N.
,
2001
, “
Thermal Behavior Analysis of Lithium-ion Batteries for Electric and Hybrid Vehicles
,”
J. Power Sources
,
99
(
1–2
), pp.
70
77
.
37.
Ma
,
S.
,
Jiang
,
M.
,
Tao
,
P.
,
Song
,
C.
,
Wu
,
J.
,
Wang
,
J.
,
Deng
,
T.
, and
Shang
,
W.
,
2018
, “
Temperature Effect and Thermal Impact in Lithium-Ion Batteries: A Review
,”
Prog. Nat. Sci.: Mater. Int.
,
28
(
6
), pp.
653
666
.
38.
Huang
,
Y. Q.
,
Lu
,
Y. J.
,
Huang
,
R.
,
Chen
,
J. X.
,
Chen
,
F. F.
,
Liu
,
Z. T.
,
Yu
,
X. L.
, and
Roskilly
,
A. P.
,
2017
, “
Study on the Thermal Interaction and Heat Dissipation of Cylindrical Lithium-Ion Battery cells
,”
Energy Procedia
,
142
, pp.
4029
4036
.
39.
Faizan
,
M.
,
Pati
,
S.
, and
Randive
,
P.
,
2022
, “
Implications of Novel Cold Plate Design With Hybrid Cooling on Thermal Management of Fast Discharging Lithium-Ion Battery
,”
J. Energ. Storage
,
53
, p.
105051
.
40.
Tang
,
Z.
,
Liu
,
Z.
,
Li
,
J.
, and
Cheng
,
J.
,
2021
, “
A Lightweight Liquid Cooling Thermal Management Structure for Prismatic Batteries
,”
J. Energy Storage
,
42
, p.
103078
.
41.
Thomas
,
A. S.
,
Garg
,
A.
,
Kim
,
J.
,
Panigrahi
,
B. K.
, and
Le Phung
,
M. L.
,
2022
, “
Study on Efficacy of Different Heat Transfer Fluids Flowing Through an Aluminium Flow Plate Channel on the Temperature of the Prismatic Lithium-Ion Battery Pack
,”
J. Energy Storage
,
52
, p.
105059
.
42.
Wu
,
J. M.
, and
Tao
,
W. Q.
,
2008
, “
Numerical Study on Laminar Convection Heat Transfer in a Rectangular Channel With Longitudinal Vortex Generator. Part A: Verification of Field Synergy Principle
,”
Int. J. Heat. Mass. Transfer.
,
51
(
5–6
), pp.
1179
1191
.
You do not currently have access to this content.