Abstract

The current work is concerned with preparing cobalt manganese ferrite (Co1-xMnxFe2O4) with different concentrations of cobalt and manganese (x = 0.2, 0.4, and 0.6) and decorating it with polyaniline (PAni) for use in supercapacitive applications. The results of the X-ray diffraction (XRD) manifested a broad peak of PAni and a cubic structure of cobalt manganese ferrite having crystal size between 60 nm and 138 nm, which decreases with increasing concentration of Mn. The field emission scanning electron microscopy (FE-SEM) images evidenced that the PAni has nanofiber (NF) structures, according to the method of preparation, where the hydrothermal method was used. The magnetic properties of the prepared ferrite, as well as the prepared PAni/Co1-xMnxFe2O4 composites, were studied through the vibrating sample magnetometer (VSM) analysis, where the magnetic hysteresis loops of ferrite elucidated a significant influence on the manganese content and the decorated PAni, through the decrease of both saturation magnetism (Ms) and remnant magnetism (Mr) in addition to the corrosive field (Hc). Increasing the content of manganese in the composites led to an improvement in the energy storage performance of the capacitors, which were tested in 1 M of H2SO4 by using the cyclic voltammetry analysis, galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS). Increasing the manganese content caused an increase in the specific capacity and a significant increase in the charging and discharging time; the highest capacitance is 556 F/g.

References

1.
Wang
,
G.
,
Zhang
,
L.
, and
Zhang
,
J.
,
2012
, “
A Review of Electrode Materials for Electrochemical Supercapacitors
,”
Chem. Soc. Rev.
,
41
(
2
), pp.
797
828
.
2.
Chen
,
Y. L.
,
Chen
,
P. C.
,
Chen
,
T. L.
,
Lee
,
C. Y.
, and
Chiu
,
H. T.
,
2013
, “
Nanosized MnO2 Spines on Au Stems for High-Performance Flexible Supercapacitor Electrodes
,”
J. Mater. Chem. A
,
1
(
42
), pp.
13301
13307
.
3.
Kodama
,
M.
,
Yamashita
,
J.
,
Soneda
,
Y.
,
Hatori
,
H.
, and
Kamegawa
,
K.
,
2007
, “
Preparation and Electrochemical Characteristics of N-Enriched Carbon Foam
,”
Carbon
,
45
(
5
), pp.
1105
1107
.
4.
Sozeri
,
H.
,
Kurtan
,
U.
,
Topkaya
,
R.
,
Baykal
,
A.
, and
Toprak
,
M. S.
,
2013
, “
Polyaniline (PANI)–Co0.5Mn0.5Fe2O4 Nanocomposite: Synthesis, Characterization and Magnetic Properties Evaluation
,”
Ceram. Int.
,
39
(
5
), pp.
5137
5143
.
5.
Khairy
,
M.
,
2014
, “
Polyaniline–Zn0.2Mn0.8 Fe2O4 Ferrite Core–Shell Composite: Preparation, Characterization and Properties
,”
J. Alloys Compd.
,
608
, pp.
283
291
.
6.
Tyagi
,
A.
,
Myung
,
Y.
,
Tripathi
,
K. M.
,
Kim
,
T. Y.
, and
Gupta
,
R. K.
,
2020
, “
High-Performance Hybrid Microsupercapacitors Based on Co-Mn Layered Double Hydroxide Nanosheets
,”
Electrochim. Acta
,
334
, p.
135590
.
7.
Tyagi
,
A.
,
Joshi
,
C.
,
Agarwal
,
M.
,
Balasubramaniam
,
K.
,
Gupta
,
B.
, and
Kumar
,
R.
,
2019
, “
Three-Dimensional Nickel Vanadium Layered Double Hydroxide Nanostructures Grown on Carbon Cloth for High-Performance Flexible Supercapacitor Applications
,”
Nanoscale Adv.
,
1
(
6
), pp.
2400
2407
.
8.
Tyagi
,
A.
,
Joshi
,
M. C.
,
Shah
,
A.
,
Thakur
,
V. K.
, and
Gupta
,
R. K.
,
2019
, “
Hydrothermally Tailored Three-Dimensional Ni-V Layered Double Hydroxide Nanosheets as High-Performance Hybrid Supercapacitor Applications
,”
ACS Omega
,
4
(
2
), pp.
3257
3267
.
9.
Beygisangchin
,
M.
,
Rashid
,
S. A.
,
Shafie
,
S.
,
Sadrolhosseini
,
A. R.
, and
Lim
,
H. N.
,
2021
, “
Preparations, Properties, and Applications of Polyaniline and Polyaniline Thin Films—A Review
,”
Polymers
,
13
(
12
), p.
2003
.
10.
Hassen
,
M. M.
, and
Ibrahim
,
I. M.
,
2021
, “
Synthesis of Polyaniline–Cerium Oxide Nanocomposite for Photodetector Application
,”
J. Phys.: Conf. Ser.
,
2114
(
1
), p.
012047
.
11.
Abdolahi
,
A.
,
Hamzah
,
E.
,
Ibrahim
,
Z.
, and
Hashim
,
S.
2012
, “
Synthesis of Uniform Polyaniline Nanofibers Through Interfacial Polymerization
,”
Materials
,
5
(
8
), pp.
1487
1494
.
12.
Beygisangchin
,
M.
,
Rashid
,
S. A.
,
Shafie
,
S.
, and
Sadrolhosseini
,
A. R.
,
2021
, “
Polyaniline Synthesized by Different Dopants for Fluorene Detection via Photoluminescence Spectroscopy
,”
Materials
,
14
(
23
), p.
7382
.
13.
Yue
,
L.
,
Xie
,
Y.
,
Zheng
,
Y.
,
He
,
W.
,
Guo
,
S.
,
Zhang
,
T.
, and
Liu
,
S.
,
2017
, “
Sulfonated Bacterial Cellulose
,”
Compos. Sci. Technol.
,
145
, pp.
122
131
.
14.
Omar
,
F. S.
,
Numan
,
A.
,
Duraisamy
,
N.
,
Bashir
,
S.
,
Ramesh
,
K.
, and
Ramesh
,
S.
,
2017
, “
A Promising Binary Nanocomposite of Zinc Cobaltite Intercalated With Polyaniline for Supercapacitor and Hydrazine Sensor
,”
J. Alloys Compd.
,
716
, pp.
96
105
.
15.
Leng
,
C.
,
Wei
,
J.
,
Liu
,
Z.
, and
Shi
,
J.
,
2011
, “
Influence of Imidazolium-Based Ionic Liquids on the Performance of Polyaniline/CoFe2O4 Nanocomposites
,”
J. Alloy Compd.
,
509
(
6
), pp.
3052
3056
.
16.
Gautam
,
K. P.
,
Acharya
,
D.
,
Bhatta
,
I.
,
Subedi
,
V.
,
Das
,
M.
,
Neupane
,
S.
,
Kunwar
,
J.
,
Chhetri
,
K.
, and
Yadav
,
A. P.
,
2022
, “
Nickel Oxide-Incorporated Polyaniline Nanocomposites as an Efficient Electrode Material for Supercapacitor Application
,”
Inorganics
,
10
(
6
), p.
86
.
17.
Ismail
,
M. S.
,
Rafeeq
,
S. N.
,
Sulaiman
,
J.
, and
Mandal
,
A.
,
2018
, “
Electromagnetic Interference Shielding and Microwave Absorption Properties of Cobalt Ferrite CoFe2O4/Polyaniline Composite
,”
Appl. Phys. A
,
124
(
1
), pp.
1
12
.
18.
Tummala
,
R.
,
Guduru
,
R. K.
, and
Mohanty
,
P. S.
,
2012
, “
Nanostructured Co3O4 Electrodes for Supercapacitor Applications From Plasma Spray Technique
,”
J. Power Sources
,
209
(
1
), pp.
44
51
.
19.
Zhao
,
X.
,
Johnston
,
C.
, and
Grant
,
P. S.
,
2009
, “
A Novel Hybrid Supercapacitor With a Carbon Nanotube Cathode and an Iron Oxide/Carbon Nanotube Composite Anode
,”
J. Mater. Chem.
,
19
(
46
), pp.
8755
8760
.
20.
Zhao
,
X.
,
Zhang
,
L.
,
Murali
,
S.
,
Stoller
,
M. D.
,
Zhang
,
Q.
,
Zhu
,
Y.
, and
Ruoff
,
R. S.
,
2012
,”
ACS Nano
,
6
(
6
), pp.
5404
5412
.
21.
Pico
,
F.
,
Ibanez
,
J.
,
Lillo-Rodenas
,
M. A.
,
Linares-Solano
,
A.
,
Rojas
,
R. M.
,
Amarilla
,
J. M.
, and
Rojo
,
J. M.
,
2008
, “
Understanding RuO2 · xH2O/Carbon Nanofibre Composites as Supercapacitor Electrodes
,”
J. Power Sources
,
176
(
1
), pp.
417
425
.
22.
Jiang
,
H.
,
Li
,
C.
,
Sun
,
T.
, and
Ma
,
J.
,
2012
, “
High-Performance Supercapacitor Material Based on Ni(OH)2 Nanowire-MnO2 Nanoflakes Core–Shell Nanostructures
,”
Chem. Commun.
,
48
(
20
), pp.
2606
2608
.
23.
Chang
,
S. K.
,
Lee
,
K. T.
,
Zainal
,
Z.
,
Tan
,
K. B.
,
Yusof
,
N. A.
,
Yusof
,
W.
,
Lee
,
J. F.
, and
Wu
,
N. L.
,
2012
, “
Structural and Electrochemical Properties of Manganese Substituted Nickel Cobaltite for Supercapacitor Application
,”
Electrochim. Acta
,
67
, pp.
67
72
.
24.
Rafeeq
,
S. N.
,
Ismail
,
M. M.
, and
Sulaiman
,
J. M. A.
,
2017
, “
Magnetic and Dielectric Properties of CoFe2O4 and CoxZn1-xFe2O4 Nanoparticles Synthesized Using Sol-Gel Method
,”
J. Magnet.
,
22
(
3
), pp.
406
413
.
25.
Hashim
,
M.
,
Ahmed
,
A.
,
Ali
,
S. A.
,
Shirsath
,
S. E.
,
Ismail
,
M. M.
,
Kumar
,
R.
,
Kumar
,
S.
,
Meena
,
S. S.
, and
Ravinder
,
D.
,
2000
, “
Structural, Optical, Elastic and Magnetic Properties of Ce and Dy Doped Cobalt Ferrites
,”
J. Alloy. Compd.
,
834
, p.
155089
.
26.
Hashim
,
M.
,
Boda
,
N.
,
Ahmed
,
A.
,
Sharma
,
S. K.
,
Ravinder
,
D.
,
Sumalatha
,
E.
,
Ul-Hamid
,
A.
, et al
,
2021
, “
Influence of Samarium Doping on Structural, Elastic, Magnetic, Dielectric, and Electrical Properties of Nanocrystalline Cobalt Ferrite
,”
Appl. Phys. A
,
127
(
7
), pp.
1
15
.
27.
Toghan
,
A.
,
Khairy
,
M.
,
Kamar
,
E. M.
, and
Mousa
,
M. A.
,
2022
, “
Effect of Particle Size and Morphological Structure on the Physical Properties of NiFe2O4 for Supercapacitor Application
,”
J. Mater. Res. Tech.
,
19
(
1
), pp.
3521
3535
.
28.
Ravinder
,
D.
,
Hashim
,
M.
,
Upadhyay
,
A.
,
Ismail
,
M. M.
,
Kumar
,
S.
,
Kumar
,
R.
,
Meena
,
S. S.
, and
Khalilullah
,
A.
,
2022
, “
Investigation of Structural and Magnetic Properties of La Doped Co–Mn Ferrite Nanoparticles in the Presence of α-Fe2O3 Phase
,”
Solid State Commun.
,
342
(
1
), p.
114629
.
29.
Ismail
,
M. M.
, and
Jaber
,
N. A.
,
2018
, “
Structural Analysis and Magnetic Properties of Lithium-Doped Ni-Zn Ferrite Nanoparticle
,”
J. Supercond. Nov. Magnetism
,
31
(
6
), pp.
1917
1923
.
30.
Ismail
,
M. M.
, and
Jaber
,
N. A.
,
2018
, “
Structural and Elastic Properties of Nickel–Zinc Ferrite Nano-Particles Doped With Lithium
,”
J. Braz. Soc. Mech. Sci. Eng.
,
40
(
5
), pp.
250
256
.
31.
Deng
,
D. H.
,
Pang
,
H.
,
Du
,
J. M.
,
Deng
,
J. W.
,
Li
,
S. J.
,
Chen
,
J.
, and
Zhang
,
J. S.
,
2012
, “
Fabrication of Cobalt Ferrite Nanostructures and Comparison of Their Electrochemical Properties
,”
Cryst. Res. Technol.
,
47
(
10
), pp.
1032
1038
.
32.
Liu
,
L.
,
Zhang
,
H.
,
Mu
,
Y.
,
Bai
,
Y.
, and
Wang
,
Y.
,
2016
, “
Binary Cobalt Ferrite Nanomesh Arrays as the Advanced Binder-Free Electrode for Applications in Oxygen Evolution Reaction and Supercapacitors
,”
J. Power Sources
,
327
, pp.
599
609
.
33.
Arsalani
,
N.
,
Tabrizi
,
A. G.
, and
Ghadimi
,
L. S.
,
2018
, “
Novel PANI/MnFe2O4 Nanocomposite for Low-Cost Supercapacitors With High Rate Capability
,”
J. Mater. Sci.: Mater. Electron.
,
29
(
7
), pp.
6077
6085
.
34.
Saadattalab
,
V.
,
Shakeri
,
A.
, and
Gholami
,
H.
,
2016
, “
Effect of CNTs and Nano ZnO on Physical and Mechanical Properties of Polyaniline Composites Applicable in Energy Devices
,”
Prog. Nat. Sci.: Mater. Int.
,
26
(
6
), pp.
517
522
.
35.
Turtelli
,
S.
,
Giap
,
R.
,
Duong
,
V.
,
Nunes
,
W.
,
Grossinger
,
R.
, and
Knobel
,
M.
,
2008
, “
Magnetic Properties of Nanocrystalline CoFe2O4 Synthesized by Modified Citrate-Gel Method
,”
J. Magn. Magn. Mater.
,
320
(
14
), pp.
e339
e342
.
36.
Alam
,
F.
,
Rahman
,
M.
,
Khan
,
M.
, and
Hossain
,
A.
,
2014
, “
Magnetic Hysteresis and Complex Initial Permeability of Cr3+ Substituted Mn-Zn Ferrites
,”
J. Modern Phys.
,
5
(
14
), pp.
1223
1233
.
37.
Adeela
,
N.
,
Maaz
,
K.
,
Khan
,
U.
,
Karim
,
S.
,
Nisar
,
A.
,
Ahmad
,
M.
,
Ali
,
G.
,
Han
,
X. F.
,
Duan
,
J. L.
, and
Liu
,
J.
,
2015
, “
Influence of Manganese Substitution on Structural and Magnetic Properties of CoFe2O4 Nanoparticles
,”
J. Alloys Compd.
,
639
, pp.
533
540
.
38.
Rashad
,
M. M.
,
2006
, “
Synthesis and Magnetic Properties of Manganese Ferrite From Low Grade Manganese Ore
,”
Mater. Sci. Eng.: B
,
127
(
2-3
), pp.
123
129
.
39.
Shao
,
W.
,
Jamal
,
R.
,
Xu
,
F.
,
Ubul
,
A.
, and
Abdiryim
,
T.
,
2012
, “
The Effect of a Small Amount of Water on the Structure and Electrochemical Properties of Solid-State Synthesized Polyaniline
,”
Materials
,
5
(
10
), pp.
1811
1825
.
40.
Saravanakumar
,
B.
,
Ramachandran
,
S. P.
,
Ravi
,
G.
,
Ganesh
,
V.
,
Guduru
,
R. K.
,
Sakunthala
,
A.
, and
Yuvakkumar
,
R.
,
2020
, “
MnFe2O4 Nanoparticles as an Efficient Electrode for Energy Storage Applications
,”
J. Nanosci. Nanotechnol.
,
20
(
1
), pp.
96
105
.
41.
Wang
,
Q.
,
Gao
,
H.
,
Qin
,
X.
,
Dai
,
J.
, and
Li
,
W.
, “
Fabrication of NiFe2O4@CoFe2O4 Core-Shell Nanofibers for Highperformance Supercapacitors
,”
IOP J. Mater. Res. Express
,
7
(1), p.
015020
.
You do not currently have access to this content.