Abstract

Lithium-ion batteries (LIBs) are widely used in electric vehicles, energy storage power stations and other portable devices for their high energy densities, long cycle life, and low self-discharge rate. However, they still face several challenges. Low-temperature environments have slowed down the use of LIBs by significantly deteriorating their normal performance. This review aims to resolve this issue by clarifying the phenomenon and reasons for the deterioration of LIB performance at low temperatures. From the perspective of system management, this review summarizes and analyzes the common performance-improving methods from two aspects including preheating and charging optimization and then depicts the future development of methods in this regard. This review is expected to inspire further studies for the improvement of the LIB performance at low temperatures.

References

1.
Xu
,
B.
,
Qian
,
D.
,
Wang
,
Z.
, and
Meng
,
Y. S.
,
2012
, “
Recent Progress in Cathode Materials Research for Advanced Lithium Ion Batteries
,”
Mater. Sci. Eng. R Rep.
,
73
(
5
), pp.
51
65
.
2.
Hu
,
X.
,
Zou
,
C.
,
Zhang
,
C.
, and
Li
,
Y.
,
2017
, “
Technological Developments in Batteries: A Survey of Principal Roles, Types, and Management Needs
,”
IEEE Power Energ. Mag.
,
15
(
5
), pp.
20
31
.
3.
Nitta
,
N.
,
Wu
,
F.
,
Lee
,
J. T.
, and
Yushin
,
G.
,
2015
, “
Li-Ion Battery Materials: Present and Future
,”
Mater. Today
,
18
(
5
), pp.
252
264
.
4.
Shrivastava
,
P.
,
Soon
,
T. K.
,
Idris
,
M. Y. I. B.
, and
Mekhilef
,
S.
,
2019
, “
Overview of Model-Based Online State-of-Charge Estimation Using Kalman Filter Family for Lithium-Ion Batteries
,”
Renewable Sustainable Energy Rev.
,
113
, p.
109233
.
5.
Ahmed
,
M.
,
Zheng
,
Y.
,
Amine
,
A.
,
Fathiannasab
,
H.
, and
Chen
,
Z.
,
2021
, “
The Role of Artificial Intelligence in the Mass Adoption of Electric Vehicles
,”
Joule
,
5
(
9
), pp.
2296
2322
.
6.
Jin
,
C.
,
2017
, “
Brief Talk About Lithium-Ion Batteries’ Safety and Influencing Factors
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
274
(
1
), p.
012152
.
7.
Chang
,
N.
,
Li
,
T.
,
Li
,
R.
,
Wang
,
S.
,
Yin
,
Y.
,
Zhang
,
H.
, and
Li
,
X.
,
2020
, “
An Aqueous Hybrid Electrolyte for Low-Temperature Zinc-Based Energy Storage Devices
,”
Energy Environ. Sci.
,
13
(
10
), pp.
3527
3535
.
8.
Piao
,
N.
,
Gao
,
X.
,
Yang
,
H.
,
Guo
,
Z.
,
Hu
,
G.
,
Cheng
,
H.-M.
, and
Li
,
F.
,
2022
, “
Challenges and Development of Lithium-Ion Batteries for Low Temperature Environments
,”
Etransportation
,
11
, p.
100145
.
9.
Smart
,
M. C.
,
Ratnakumar
,
B. V.
,
Ewell
,
R. C.
,
Surampudi
,
S.
,
Puglia
,
F. J.
, and
Gitzendanner
,
R.
,
2018
, “
The Use of Lithium-Ion Batteries for JPL's Mars Missions
,”
Electrochim. Acta
,
268
, pp.
27
40
.
10.
Liu
,
H.
,
Wei
,
Z.
,
He
,
W.
, and
Zhao
,
J.
,
2017
, “
Thermal Issues About Li-Ion Batteries and Recent Progress in Battery Thermal Management Systems: A Review
,”
Energy Convers. Manage.
,
150
, pp.
304
330
.
11.
Li
,
W.
,
Rao
,
S.
,
Xiao
,
Y.
,
Gao
,
Z.
,
Chen
,
Y.
,
Wang
,
H.
, and
Ouyang
,
M.
,
2021
, “
Fire Boundaries of Lithium-Ion Cell Eruption Gases Caused by Thermal Runaway
,”
iScience
,
24
(
5
), p.
102401
.
12.
Zhang
,
Y.
,
Wang
,
H.
,
Li
,
W.
, and
Li
,
C.
,
2019
, “
Quantitative Identification of Emissions From Abused Prismatic Ni-Rich Lithium-Ion Batteries
,”
Etransportation
,
2
, p.
100031
.
13.
Ye
,
Y.
,
Chou
,
L.-Y.
,
Liu
,
Y.
,
Wang
,
H.
,
Lee
,
H. K.
,
Huang
,
W.
,
Wan
,
J.
, et al
,
2020
, “
Ultralight and Fire-Extinguishing Current Collectors for High-Energy and High-Safety Lithium-Ion Batteries
,”
Nat. Energy
,
5
(
10
), pp.
786
793
.
14.
Lai
,
X.
,
Yao
,
J.
,
Jin
,
C.
,
Feng
,
X.
,
Wang
,
H.
,
Xu
,
C.
, and
Zheng
,
Y.
,
2022
, “
A Review of Lithium-Ion Battery Failure Hazards: Test Standards, Accident Analysis, and Safety Suggestions
,”
Batteries.
,
8
(
11
), p.
248
. 8
15.
Huang
,
P.
,
Wang
,
Q.
,
Li
,
K.
,
Ping
,
P.
, and
Sun
,
J.
,
2015
, “
The Combustion Behavior of Large Scale Lithium Titanate Battery
,”
Sci. Rep.
,
5
(
1
), p.
7788
.
16.
Hu
,
X.
,
Zheng
,
Y.
,
Howey
,
D. A.
,
Perez
,
H.
,
Foley
,
A.
, and
Pecht
,
M.
,
2020
, “
Battery Warm-Up Methodologies at Subzero Temperatures for Automotive Applications: Recent Advances and Perspectives
,”
Prog. Energy Combust. Sci.
,
77
, p.
100806
.
17.
Ji
,
Y.
,
Zhang
,
Y.
, and
Wang
,
C.-Y.
,
2013
, “
Li-Ion Cell Operation at Low Temperatures
,”
J. Electrochem. Soc.
,
160
(
4
), pp.
A636
A469
.
18.
Senyshyn
,
A.
,
Mühlbauer
,
M. J.
,
Dolotko
,
O.
, and
Ehrenberg
,
H.
,
2015
, “
Low-Temperature Performance of Li-Ion Batteries: The Behavior of Lithiated Graphite
,”
J. Power Sources
,
282
, pp.
235
240
.
19.
Jaguemont
,
J.
,
Boulon
,
L.
,
Dubé
,
Y.
, and
Poudrier
,
D.
,
2014
, “
Low Temperature Discharge Cycle Tests for a Lithium-Ion Cell
,”
Proceedings of the 2014 IEEE Vehicle Power and Propulsion Conference (VPPC)
,
Coimbra, Portugal
,
Oct. 27–30
, IEEE, pp.
1
6
.
20.
Zhang
,
S. S.
,
Xu
,
K.
, and
Jow
,
T. R.
,
2006
, “
Charge and Discharge Characteristics of a Commercial LiCoO2-Based 18650 Li-Ion Battery
,”
J. Power Sources
,
160
(
2
), pp.
1403
1409
.
21.
Nagasubramanian
,
G.
,
2001
, “
Electrical Characteristics of 18650 Li-Ion Cells at low Temperatures
,”
J. Appl. Electrochem.
,
31
(
1
), pp.
99
104
.
22.
Lin
,
H.-P.
,
Chua
,
D.
,
Salomon
,
M.
,
Shiao
,
H.-C.
,
Hendrickson
,
M.
,
Plichta
,
E.
, and
Slane
,
S.
,
2001
, “
Low-Temperature Behavior of Li-Ion Cells
,”
Electrochem. Solid-State Lett.
,
4
(
6
), p.
A71
.
23.
Zhang
,
S. S.
,
Xu
,
K.
, and
Jow
,
T. R.
,
2004
, “
Electrochemical Impedance Study on the low Temperature of Li-Ion Batteries
,”
Electrochim. Acta
,
49
(
7
), pp.
1057
1061
.
24.
Zhang
,
S. S.
,
Xu
,
K.
, and
Jow
,
T. R.
,
2002
, “
Low Temperature Performance of Graphite Electrode in Li-Ion Cells
,”
Electrochim. Acta
,
48
(
3
), pp.
241
246
.
25.
Ouyang
,
M.
,
Chu
,
Z.
,
Lu
,
L.
,
Li
,
J.
,
Han
,
X.
,
Feng
,
X.
, and
Liu
,
G.
,
2015
, “
Low Temperature Aging Mechanism Identification and Lithium Deposition in a Large Format Lithium Iron Phosphate Battery for Different Charge Profiles
,”
J. Power Sources
,
286
, pp.
309
320
.
26.
Ge
,
H.
,
Aoki
,
T.
,
Ikeda
,
N.
,
Suga
,
S.
,
Isobe
,
T.
,
Li
,
Z.
,
Tabuchi
,
Y.
, and
Zhang
,
J.
,
2017
, “
Investigating Lithium Plating in Lithium-Ion Batteries at Low Temperatures Using Electrochemical Model With NMR Assisted Parameterization
,”
J. Electrochem. Soc.
,
164
(
6
), pp.
A1050
A1060
.
27.
Wang
,
Y.
,
Zhang
,
X.
, and
Chen
,
Z.
,
2022
, “
Low Temperature Preheating Techniques for Lithium-Ion Batteries: Recent Advances and Future Challenges
,”
Appl. Energy
,
313
, p.
118832
.
28.
Wang
,
Q.
,
Jiang
,
B.
,
Li
,
B.
, and
Yan
,
Y.
,
2016
, “
A Critical Review of Thermal Management Models and Solutions of Lithium-Ion Batteries for the Development of Pure Electric Vehicles
,”
Renewable Sustainable Energy Rev.
,
64
, pp.
106
128
.
29.
Ji
,
Y.
, and
Wang
,
C. Y.
,
2013
, “
Heating Strategies for Li-Ion Batteries Operated From Subzero Temperatures
,”
Electrochim. Acta
,
107
, pp.
664
674
.
30.
Hyun-Sik
,
S.
,
Jin-Beom
,
J.
,
Baek-Haeng
,
L.
,
Hyun
,
S. D.
,
Byoung-Hoon
,
K.
,
Tae-Hoon
,
K.
, and
Hoon
,
H.
,
2012
, “
Experimental Study on the Effects of Pre-Heating a Battery in a Low-Temperature Environment
,”
2012 IEEE Vehicle Power and Propulsion Conference
,
Seoul, South Korea
,
Oct. 9–12
, pp.
1198
1201
.
31.
Waldmann
,
T.
,
Wilka
,
M.
,
Kasper
,
M.
,
Fleischhammer
,
M.
, and
Wohlfahrt-Mehrens
,
M.
,
2014
, “
Temperature Dependent Ageing Mechanisms in Lithium-Ion Batteries—A Post-Mortem Study
,”
J. Power Sources
,
262
, pp.
129
135
.
32.
Gao
,
F.
, and
Tang
,
Z.
,
2008
, “
Kinetic Behavior of LiFePO4/C Cathode Material for Lithium-Ion Batteries
,”
Electrochim. Acta
,
53
(
15
), pp.
5071
5075
.
33.
Kalantzopoulos
,
G. N.
,
Lundvall
,
F.
,
Checchia
,
S.
,
Lind
,
A.
,
Wragg
,
D. S.
,
Fjellvåg
,
H.
, and
Arstad
,
B.
,
2018
, “
In Situ Flow MAS NMR Spectroscopy and Synchrotron PDF Analyses of the Local Response of the Brønsted Acidic Site in SAPO-34 During Hydration at Elevated Temperatures
,”
ChemPhysChem
,
19
(
4
), pp.
519
528
.
34.
Ahmad
,
P.
,
Andreas
,
V.
, and
Thomas
,
S.
,
2003
, “
TED-AJ03-633 Cooling and Preheating of Batteries in Hybrid Electric Vehicles
,”
ASME/JSME Thermal Engineering Joint Conference
,
Kohala Coast, HI
,
Mar. 16–20
.
35.
Yu-tao
,
L.
,
Chun-yan
,
L.
, and
Bu-er-si
,
L.
,
2016
, “
Investigation Into Heating System of Lithium-Ion Battery Pack in Low-Temperature Environment
,”
J. South China Univ. Technol.(Nat. Sci.)
,
44
(
9
), pp.
100
106
.
36.
Sun
,
X.
,
Xu
,
X.
,
Fu
,
J.
,
Tang
,
W.
, and
Yuan
,
Q.
, “
Research on Thermal Equilibrium Performance of Liquid-Cooled Lithium-Ion Power Battery System at Low Temperature
,”
Therm. Sci.
,
24
(
6 Part B
), pp.
4147
4158
.
37.
Yuan
,
H.
,
Wang
,
L.
, and
Wang
,
L.
,
2012
, “
Battery Thermal Management System With Liquid Cooling and Heating in Electric Vehicles
,”
J. Automot. Saf. Energy
,
4
, pp.
371
380
.
38.
Huo
,
Y.
,
Rao
,
Z.
,
Liu
,
X.
, and
Zhao
,
J.
,
2015
, “
Investigation of Power Battery Thermal Management by Using Mini-Channel Cold Plate
,”
Energy Convers. Manage.
,
89
, pp.
387
395
.
39.
Jarrett
,
A.
, and
Kim
,
I. Y.
,
2011
, “
Design Optimization of Electric Vehicle Battery Cooling Plates for Thermal Performance
,”
J. Power Sources
,
196
(
23
), pp.
10359
10368
.
40.
Nieto
,
N.
,
Díaz
,
L.
,
Gastelurrutia
,
J.
,
Blanco
,
F.
,
Ramos
,
J. C.
, and
Rivas
,
A.
,
2014
, “
Novel Thermal Management System Design Methodology for Power Lithium-Ion Battery
,”
J. Power Sources
,
272
, pp.
291
302
.
41.
Wu
,
W.
,
Wang
,
S.
,
Wu
,
W.
,
Chen
,
K.
,
Hong
,
S.
, and
Lai
,
Y.
,
2019
, “
A Critical Review of Battery Thermal Performance and Liquid Based Battery Thermal Management
,”
Energy Convers. Manage.
,
182
, pp.
262
281
.
42.
Liu
,
H.
,
Chika
,
E.
, and
Zhao
,
J.
,
2018
, “
Investigation Into the Effectiveness of Nanofluids on the Mini-Channel Thermal Management for High Power Lithium Ion Battery
,”
Appl. Therm. Eng.
,
142
, pp.
511
523
.
43.
Wu
,
F.
, and
Rao
,
Z.
,
2017
, “
The Lattice Boltzmann Investigation of Natural Convection for Nanofluid Based Battery Thermal Management
,”
Appl. Therm. Eng.
,
115
, pp.
659
669
.
44.
Sefidan
,
A. M.
,
Sojoudi
,
A.
, and
Saha
,
S. C.
,
2017
, “
Nanofluid-Based Cooling of Cylindrical Lithium-Ion Battery Packs Employing Forced Air Flow
,”
Int. J. Therm. Sci.
,
117
, pp.
44
58
.
45.
Che Sidik
,
N. A.
,
Witri Mohd Yazid
,
M. N. A.
, and
Mamat
,
R.
,
2017
, “
Recent Advancement of Nanofluids in Engine Cooling System
,”
Renewable Sustainable Energy Rev.
,
75
, pp.
137
144
.
46.
Godson
,
L.
,
Raja
,
B.
,
Mohan Lal
,
D.
, and
Wongwises
,
S.
,
2010
, “
Enhancement of Heat Transfer Using Nanofluids—An Overview
,”
Renewable Sustainable Energy Rev.
,
14
(
2
), pp.
629
641
.
47.
Saidur
,
R.
,
Leong
,
K. Y.
, and
Mohammed
,
H. A.
,
2011
, “
A Review on Applications and Challenges of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
15
(
3
), pp.
1646
1668
.
48.
Sidik
,
N. A. C.
,
Yazid
,
M. N. A. W. M.
, and
Mamat
,
R.
,
2015
, “
A Review on the Application of Nanofluids in Vehicle Engine Cooling System
,”
Int. Commun. Heat Mass Transfer
,
68
, pp.
85
90
.
49.
Goutam
,
S.
,
Nikolian
,
A.
,
Jaguemont
,
J.
,
Smekens
,
J.
,
Omar
,
N.
,
Van Dan Bossche
,
P.
, and
Van Mierlo
,
J.
,
2017
, “
Three-Dimensional Electro-Thermal Model of Li-Ion Pouch Cell: Analysis and Comparison of Cell Design Factors and Model Assumptions
,”
Appl. Therm. Eng.
,
126
, pp.
796
808
.
50.
Xu
,
M.
,
Zhang
,
Z.
,
Wang
,
X.
,
Jia
,
L.
, and
Yang
,
L.
,
2015
, “
A Pseudo Three-Dimensional Electrochemical–Thermal Model of a Prismatic LiFePO4 Battery During Discharge Process
,”
Energy
,
80
, pp.
303
317
.
51.
Ahn
,
J. H.
,
Kang
,
H.
,
Lee
,
H. S.
,
Jung
,
H. W.
,
Baek
,
C.
, and
Kim
,
Y.
,
2014
, “
Heating Performance Characteristics of a Dual Source Heat Pump Using Air and Waste Heat in Electric Vehicles
,”
Appl. Energy
,
119
, pp.
1
9
.
52.
Fleckenstein
,
M.
,
Bohlen
,
O.
,
Roscher
,
M. A.
, and
Bäker
,
B.
,
2011
, “
Current Density and State of Charge Inhomogeneities in Li-Ion Battery Cells With LiFePO4 as Cathode Material Due to Temperature Gradients
,”
J. Power Sources
,
196
(
10
), pp.
4769
4778
.
53.
Guo
,
S.
,
Xiong
,
R.
,
Wang
,
K.
, and
Sun
,
F.
,
2018
, “
A Novel Echelon Internal Heating Strategy of Cold Batteries for All-Climate Electric Vehicles Application
,”
Appl. Energy
,
219
, pp.
256
263
.
54.
Zhang
,
J.
,
Ge
,
H.
,
Li
,
Z.
, and
Ding
,
Z.
,
2015
, “
Internal Heating of Lithium-Ion Batteries Using Alternating Current Based on the Heat Generation Model in Frequency Domain
,”
J. Power Sources
,
273
, pp.
1030
1037
.
55.
Shin
,
Y. H.
,
Ahn
,
S. K.
, and
Kim
,
S. C.
,
2016
, “
Performance Characteristics of PTC Elements for an Electric Vehicle Heating System
,”
Energies
,
9
(
10
), p.
813
.
56.
Qin
,
F.
,
Xue
,
Q.
,
Albarracin Velez
,
G. M.
,
Zhang
,
G.
,
Zou
,
H.
, and
Tian
,
C.
,
2015
, “
Experimental Investigation on Heating Performance of Heat Pump for Electric Vehicles at −20 °C Ambient Temperature
,”
Energy Convers. Manage.
,
102
, pp.
39
49
.
57.
Zhang
,
J.
,
Sun
,
F.
, and
Wang
,
Z.
,
2017
, “
Heating Character of a LiMn2O4 Battery Pack at Low Temperature Based on PTC and Metallic Resistance Material
,”
Energy Procedia
,
105
, pp.
2131
2138
.
58.
Li
,
J.
,
Wu
,
P.
, and
Tian
,
H.
,
2014
, “
Researches on Heating Low-Temperature Lithium-ion Power Battery in Electric Vehicles
,” Beijing Inst Technol, Beijing 13621239752, Peoples R China.
59.
Jin
,
X.
,
Li
,
J.-Q.
,
Zhang
,
C.-N.
, and
Wu
,
P.-E.
,
2016
, “
Researches on Modeling and Experiment of Li-ion Battery PTC Self-Heating in Electric Vehicles
,”
Energy Procedia
,
104
, pp.
62
67
.
60.
Zhang
,
C.
,
Jin
,
X.
, and
Li
,
J.
,
2017
, “
PTC Self-Heating Experiments and Thermal Modeling of Lithium-Ion Battery Pack in Electric Vehicles
,”
Energies
,
10
(
4
), p.
572
.
61.
Lei
,
Z.
,
Zhang
,
C.
,
Li
,
J.
,
Fan
,
G.
, and
Lin
,
Z.
,
2015
, “
Preheating Method of Lithium-Ion Batteries in an Electric Vehicle
,”
J. Mod. Power Syst. Clean Energy
,
3
(
2
), pp.
289
296
.
62.
Harman
,
T. C.
,
Cahn
,
J. H.
, and
Logan
,
M. J.
,
1959
, “
Measurement of Thermal Conductivity by Utilization of the Peltier Effect
,”
J. Appl. Phys.
,
30
(
9
), pp.
1351
1359
.
63.
Wright
,
D. A.
,
1962
, “
Thermoelectricity: An Introduction to the Principles
,”
Phys. Bull.
,
13
(
10
), pp.
283
284
.
64.
Sadighi Dizaji
,
H.
,
Jafarmadar
,
S.
,
Khalilarya
,
S.
, and
Pourhedayat
,
S.
,
2019
, “
A Comprehensive Exergy Analysis of a Prototype Peltier Air-Cooler; Experimental Investigation
,”
Renewable Energy
,
131
, pp.
308
317
.
65.
Moria
,
H.
,
Pourhedayat
,
S.
,
Dizaji
,
H. S.
,
Abusorrah
,
A. M.
,
Abu-Hamdeh
,
N. H.
, and
Wae-hayee
,
M.
,
2021
, “
Exergoeconomic Analysis of a Peltier Effect Air Cooler Using Experimental Data
,”
Appl. Therm. Eng.
,
186
, p.
116513
.
66.
Alaoui
,
C.
, and
Salameh
,
Z. M.
,
2005
, “
A Novel Thermal Management for Electric and Hybrid Vehicles(Article)
,”
IEEE Trans. Veh. Technol.
,
54
(
2
), pp.
468
476
.
67.
Yang
,
N.
,
Zhang
,
X.
,
Shang
,
B.
, and
Li
,
G.
,
2016
, “
Unbalanced Discharging and Aging due to Temperature Differences among the Cells in a Lithium-Ion Battery Pack With Parallel Combination
,”
J. Power Sources
,
306
, pp.
733
741
.
68.
Arora
,
S.
,
2018
, “
Selection of Thermal Management System for Modular Battery Packs of Electric Vehicles: A Review of Existing and Emerging Technologies
,”
J. Power Sources
,
400
, pp.
621
640
.
69.
Tarascon
,
J. M.
, and
Armand
,
M.
,
2001
, “
Issues and Challenges Facing Rechargeable Lithium Batteries
,”
Nature
,
414
(
6861
), pp.
359
367
.
70.
Wang
,
Q.
,
Jiang
,
B.
,
Xue
,
Q. F.
,
Sun
,
H. L.
,
Li
,
B.
,
Zou
,
H. M.
, and
Yan
,
Y. Y.
,
2015
, “
Experimental Investigation on EV Battery Cooling and Heating by Heat Pipes
,”
Appl. Therm. Eng.
,
88
, pp.
54
60
.
71.
Deng
,
Y.
,
Quan
,
Z.
,
Zhao
,
Y.
, and
Wang
,
L.
,
2013
, “
Experimental Investigations on the Heat Transfer Characteristics of Micro Heat Pipe Array Applied to Flat Plate Solar Collector
,”
Sci. China Technol. Sci.
,
56
(
5
), pp.
1177
1185
.
72.
Zhang
,
S. S.
,
Xu
,
K.
, and
Jow
,
T. R.
,
2006
, “
Study of the Charging Process of a LiCoO2-Based Li-Ion Battery
,”
J. Power Sources
,
160
(
2
), pp.
1349
1354
.
73.
Ye
,
X.
,
Zhao
,
Y.
, and
Quan
,
Z.
,
2018
, “
Thermal Management System of Lithium-Ion Battery Module Based on Micro Heat Pipe Array
,”
Int. J. Energy Res.
,
42
(
2
), pp.
648
655
.
74.
Jaguemont
,
J.
,
Boulon
,
L.
, and
Dubé
,
Y.
,
2016
, “
A Comprehensive Review of Lithium-Ion Batteries Used in Hybrid and Electric Vehicles at Cold Temperatures
,”
Appl. Energy
,
164
, pp.
99
114
.
75.
Vlahinos
,
A.
, and
Pesaran
,
A. A.
,
2002
, “
Energy Efficient Battery Heating in Cold Climates
,”
SAE Trans.
,
111
, pp.
826
833
.
76.
Cho
,
C.
,
Kim
,
G.
, and
Pyo
,
Y.
,
2016
, “
The Development of an Energy-Efficient Heating System for Electric Vehicles
,”
Proceedings of the 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific)
,
Busan, South Korea
,
June 1–4
, pp.
883
885
.
77.
Seo
,
J.-H.
,
Patil
,
M. S.
,
Cho
,
C.-P.
, and
Lee
,
M.-Y.
,
2018
, “
Heat Transfer Characteristics of the Integrated Heating System for Cabin and Battery of an Electric Vehicle Under Cold Weather Conditions
,”
Int. J. Heat Mass Transfer
,
117
, pp.
80
94
.
78.
Wang
,
F.
,
Zhang
,
J.
, and
Wang
,
L.
,
2013
, “
Design of Electric Air-Heated Box for Batteries in Electric Vehicles
,”
Chin. J. Power Sources
,
7
, pp.
1184
1187
.
79.
Zichen
,
W.
, and
Changqing
,
D.
,
2021
, “
A Comprehensive Review on Thermal Management Systems for Power Lithium-Ion Batteries
,”
Renewable Sustainable Energy Rev.
,
139
, p.
110685
.
80.
Hallaj
,
S. A.
, and
Selman
,
J. R.
,
2000
, “
A Novel Thermal Management System for Electric Vehicle Batteries Using Phase-Change Material
,”
J. Electrochem. Soc.
,
147
(
9
), p.
3231
.
81.
He
,
F.
,
Li
,
X.
,
Zhang
,
G.
,
Zhong
,
G.
, and
He
,
J.
,
2018
, “
Experimental Investigation of Thermal Management System for Lithium Ion Batteries Module With Coupling Effect by Heat Sheets and Phase Change Materials
,”
Int. J. Energy Res.
,
42
(
10
), pp.
3279
3288
.
82.
Ling
,
Z.
,
Wen
,
X.
,
Zhang
,
Z.
,
Fang
,
X.
, and
Xu
,
T.
,
2016
, “
Warming-Up Effects of Phase Change Materials on Lithium-Ion Batteries Operated at Low Temperatures
,”
Energy Technol.
,
4
(
9
), pp.
1071
1076
.
83.
Zhang
,
X.
,
Kong
,
X.
,
Li
,
G.
, and
Li
,
J.
,
2014
, “
Thermodynamic Assessment of Active Cooling/Heating Methods for Lithium-Ion Batteries of Electric Vehicles in Extreme Conditions
,”
Energy
,
64
, pp.
1092
1101
.
84.
Goli
,
P.
,
Legedza
,
S.
,
Dhar
,
A.
,
Salgado
,
R.
,
Renteria
,
J.
, and
Balandin
,
A. A.
,
2014
, “
Graphene-Enhanced Hybrid Phase Change Materials for Thermal Management of Li-Ion Batteries
,”
J. Power Sources
,
248
, pp.
37
43
.
85.
Mills
,
A.
,
Farid
,
M.
,
Selman
,
J. R.
, and
Al-Hallaj
,
S.
,
2006
, “
Thermal Conductivity Enhancement of Phase Change Materials Using a Graphite Matrix
,”
Appl. Therm. Eng.
,
26
(
14
), pp.
1652
1661
.
86.
Zhong
,
G.
,
Zhang
,
G.
,
Yang
,
X.
,
Li
,
X.
,
Wang
,
Z.
,
Yang
,
C.
,
Yang
,
C.
, and
Gao
,
G.
,
2017
, “
Researches of Composite Phase Change Material Cooling/Resistance Wire Preheating Coupling System of a Designed 18650-Type Battery Module
,”
Appl. Therm. Eng.
,
127
, pp.
176
183
.
87.
Wang
,
C.-Y.
,
Zhang
,
G.
,
Ge
,
S.
,
Xu
,
T.
,
Ji
,
Y.
,
Yang
,
X.-G.
, and
Leng
,
Y.
,
2016
, “
Lithium-Ion Battery Structure That Self-Heats at Low Temperatures
,”
Nature
,
529
(
7587
), pp.
515
518
.
88.
Wu
,
X.
,
Chen
,
Z.
, and
Wang
,
Z.
,
2017
, “
Analysis of Low Temperature Preheating Effect Based on Battery Temperature-Rise Model
,”
Energies
,
10
(
8
), pp.
1
15
.
89.
Wang
,
C.-Y.
,
Xu
,
T.
,
Ge
,
S.
,
Zhang
,
G.
,
Yang
,
X.-G.
, and
Ji
,
Y.
,
2016
, “
A Fast Rechargeable Lithium-Ion Battery at Subfreezing Temperatures
,”
J. Electrochem. Soc.
,
163
(
9
), p.
A1944
.
90.
Yang
,
X.-G.
,
Liu
,
T.
, and
Wang
,
C.-Y.
,
2017
, “
Innovative Heating of Large-Size Automotive Li-Ion Cells
,”
J. Power Sources
,
342
, pp.
598
604
.
91.
Wu
,
S.
,
Xiong
,
R.
,
Li
,
H.
,
Nian
,
V.
, and
Ma
,
S.
,
2020
, “
The State of the Art on Preheating Lithium-Ion Batteries in Cold Weather
,”
J. Energy Storage
,
27
, p.
101059
.
92.
Hande
,
A.
, and
Stuart
,
T. A.
,
2002
, “
AC Heating for EV/HEV Batteries
,”
7th Workshop on Power Electronics in Transportation (WPET 2002)
,
Auburn Hills, MI
,
Oct. 24–25
.
93.
Li
,
J.
,
Sun
,
D.
,
Chai
,
Z.
,
Jiang
,
H.
, and
Sun
,
C.
,
2019
, “
Sinusoidal Alternating Current Heating Strategy and Optimization of Lithium-Ion Batteries With a Thermo-Electric Coupled Model
,”
Energy
,
186
, p.
115798
.
94.
Zhu
,
J.
,
Sun
,
Z.
,
Wei
,
X.
,
Dai
,
H.
, and
Gu
,
W.
,
2017
, “
Experimental Investigations of an AC Pulse Heating Method for Vehicular High Power Lithium-Ion Batteries at Subzero Temperatures
,”
J. Power Sources
,
367
, pp.
145
157
.
95.
Ruan
,
H.
,
Jiang
,
J.
,
Sun
,
B.
,
Su
,
X.
,
He
,
X.
, and
Zhao
,
K.
,
2019
, “
An Optimal Internal-Heating Strategy for Lithium-Ion Batteries at low Temperature Considering Both Heating Time and Lifetime Reduction
,”
Appl. Energy
,
256
, p.
113797
.
96.
Du
,
J.
,
Chen
,
Z.
, and
Li
,
F.
,
2018
, “
Multi-Objective Optimization Discharge Method for Heating Lithium-Ion Battery at Low Temperatures
,”
IEEE Access
,
6
, pp.
44036
44049
.
97.
Qu
,
Z. G.
,
Jiang
,
Z. Y.
, and
Wang
,
Q.
,
2019
, “
Experimental Study on Pulse Self–Heating of Lithium–Ion Battery at Low Temperature
,”
Int. J. Heat Mass Transfer
,
135
, pp.
696
705
.
98.
Zhu
,
J.
,
Sun
,
Z.
,
Wei
,
X.
, and
Dai
,
H.
,
2016
, “
An Alternating Current Heating Method for Lithium-Ion Batteries From Subzero Temperatures
,”
Int. J. Energy Res.
,
40
(
13
), pp.
1869
1883
.
99.
Petzl
,
M.
,
Kasper
,
M.
, and
Danzer
,
M. A.
,
2015
, “
Lithium Plating in a Commercial Lithium-Ion Battery—A Low-Temperature Aging Study
,”
J. Power Sources
,
275
, pp.
799
807
.
100.
Wang
,
H.
,
Zhu
,
Y.
,
Kim
,
S. C.
,
Pei
,
A.
,
Li
,
Y.
,
Boyle
,
D. T.
,
Wang
,
H.
, et al
,
2020
, “
Underpotential Lithium Plating on Graphite Anodes Caused by Temperature Heterogeneity
,”
Proc. Natl. Acad. Sci. U. S. A.
,
117
(
47
), pp.
29453
29461
.
101.
Von Lüders
,
C.
,
Zinth
,
V.
,
Erhard
,
S. V.
,
Osswald
,
P. J.
,
Hofmann
,
M.
,
Gilles
,
R.
, and
Jossen
,
A.
,
2017
, “
Lithium Plating in Lithium-Ion Batteries Investigated by Voltage Relaxation and In situ Neutron Diffraction
,”
J. Power Sources
,
342
, pp.
17
23
.
102.
Rauhala
,
T.
,
Jalkanen
,
K.
,
Romann
,
T.
,
Lust
,
E.
,
Omar
,
N.
, and
Kallio
,
T.
,
2018
, “
Low-Temperature Aging Mechanisms of Commercial Graphite/LiFePO4 Cells Cycled With a Simulated Electric Vehicle Load Profile—A Post-Mortem Study
,”
J. Energy Storage
,
20
, pp.
344
356
.
103.
Petzl
,
M.
, and
Danzer
,
M. A.
,
2014
, “
Nondestructive Detection, Characterization, and Quantification of Lithium Plating in Commercial Lithium-Ion Batteries
,”
J. Power Sources
,
254
, pp.
80
87
.
104.
Zinth
,
V.
,
von Lüders
,
C.
,
Hofmann
,
M.
,
Hattendorff
,
J.
,
Buchberger
,
I.
,
Erhard
,
S.
,
Rebelo-Kornmeier
,
J.
,
Jossen
,
A.
, and
Gilles
,
R.
,
2014
, “
Lithium Plating in Lithium-Ion Batteries at Sub-Ambient Temperatures Investigated by In situ Neutron Diffraction
,”
J. Power Sources
,
271
, pp.
152
159
.
105.
Campbell
,
I. D.
,
Marzook
,
M.
,
Marinescu
,
M.
, and
Offer
,
G. J.
,
2019
, “
How Observable Is Lithium Plating? Differential Voltage Analysis to Identify and Quantify Lithium Plating Following Fast Charging of Cold Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
166
(
4
), p.
A725
.
106.
Ren
,
D.
,
Smith
,
K.
,
Guo
,
D.
,
Han
,
X.
,
Feng
,
X.
,
Lu
,
L.
,
Ouyang
,
M.
, and
Li
,
J.
,
2018
, “
Investigation of Lithium Plating-Stripping Process in Li-Ion Batteries at Low Temperature Using an Electrochemical Model
,”
J. Electrochem. Soc.
,
165
(
10
), pp.
A2167
A2178
.
107.
Ye
,
Y.
,
Shi
,
Y.
,
Saw
,
L. H.
, and
Tay
,
A. A. O.
,
2013
, “
Simulation and Evaluation of Capacity Recovery Methods for Spiral-Wound Lithium Ion Batteries
,”
J. Power Sources
,
243
, pp.
779
789
.
108.
Jokar
,
A.
,
Rajabloo
,
B.
,
Désilets
,
M.
, and
Lacroix
,
M.
,
2016
, “
Review of Simplified Pseudo-Two-Dimensional Models of Lithium-Ion Batteries
,”
J. Power Sources
,
327
, pp.
44
55
.
109.
Santhanagopalan
,
S.
,
Guo
,
Q.
,
Ramadass
,
P.
, and
White
,
R. E.
,
2006
, “
Review of Models for Predicting the Cycling Performance of Lithium Ion Batteries
,”
J. Power Sources
,
156
(
2
), pp.
620
628
.
110.
Anseán
,
D.
,
Dubarry
,
M.
,
Devie
,
A.
,
Liaw
,
B. Y.
,
García
,
V. M.
,
Viera
,
J. C.
, and
González
,
M.
,
2017
, “
Operando Lithium Plating Quantification and Early Detection of a Commercial LiFePO4 Cell Cycled Under Dynamic Driving Schedule
,”
J. Power Sources
,
356
, pp.
36
46
.
111.
Keil
,
P.
, and
Jossen
,
A.
,
2016
, “
Charging Protocols for Lithium-ion Batteries and Their Impact on Cycle Life—An Experimental Study with Different 18650 High-Power Cells
,”
J. Energy Storage
,
6
, pp.
125
141
.
112.
Choi
,
S. S.
, and
Lim
,
H. S.
,
2002
, “
Factors That Affect Cycle-Life and Possible Degradation Mechanisms of a Li-Ion Cell Based on LiCoO2
,”
J. Power Sources
,
111
(
1
), pp.
130
136
.
113.
Lin
,
X.
,
Khosravinia
,
K.
,
Hu
,
X.
,
Li
,
J.
, and
Lu
,
W.
,
2021
, “
Lithium Plating Mechanism, Detection, and Mitigation in Lithium-Ion Batteries
,”
Prog. Energy Combust. Sci.
,
87
, p.
100953
.
114.
Gao
,
Y.
,
Zhang
,
X.
,
Cheng
,
Q.
,
Guo
,
B.
, and
Yang
,
J.
,
2019
, “
Classification and Review of the Charging Strategies for Commercial Lithium-Ion Batteries
,”
IEEE Access
,
7
, pp.
43511
43524
.
115.
Amanor-Boadu
,
J. M.
, and
Guiseppi-Elie
,
A.
,
2020
, “
Improved Performance of Li-Ion Polymer Batteries Through Improved Pulse Charging Algorithm
,”
Appl. Sci.
,
10
(
3
), p.
895
.
116.
Niroshana
,
S. M. I.
, and
Sirisukprasert
,
S.
,
2017
, “
An Adaptive Pulse Charging Algorithm for Lithium Batteries
,”
Proceedings of the 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)
,
Phuket, Thailand
,
June 27–30
, IEEE, New York, pp.
218
221
.
117.
Yin
,
M. D.
,
Cho
,
J.
, and
Park
,
D.
,
2016
, “
Pulse-Based Fast Battery IoT Charger Using Dynamic Frequency and Duty Control Techniques Based on Multi-Sensing of Polarization Curve
,”
Energies
,
9
(
3
), p.
209
.
118.
Zhao
,
H.
,
Wang
,
L.
,
Chen
,
Z.
, and
He
,
X.
,
2019
, “
Challenges of Fast Charging for Electric Vehicles and the Role of Red Phosphorous as Anode Material: Review
,”
Energies
,
12
(
20
), p.
3897
.
119.
Tomaszewska
,
A.
,
Chu
,
Z.
,
Feng
,
X.
,
O'Kane
,
S.
,
Liu
,
X.
,
Chen
,
J.
,
Ji
,
C.
, et al
,
2019
, “
Lithium-Ion Battery Fast Charging: A Review
,”
eTransportation
,
1
, p.
100011
.
120.
Spingler
,
F. B.
,
Wittmann
,
W.
,
Sturm
,
J.
,
Rieger
,
B.
, and
Jossen
,
A.
,
2018
, “
Optimum Fast Charging of Lithium-Ion Pouch Cells Based on Local Volume Expansion Criteria
,”
J. Power Sources
,
393
, pp.
152
160
.
121.
Kumar
,
K.
, and
Pareek
,
K.
,
2023
, “
Fast Charging of Lithium-Ion Battery Using Multistage Charging and Optimization With Grey Relational Analysis
,”
J. Energy Storage
,
68
, p.
107704
.
122.
Tanim
,
T. R.
,
Paul
,
P. P.
,
Thampy
,
V.
,
Cao
,
C.
,
Steinrück
,
H.-G.
,
Nelson Weker
,
J.
,
Toney
,
M. F.
, et al
,
2020
, “
Heterogeneous Behavior of Lithium Plating During Extreme Fast Charging
,”
Cell Rep. Phys. Sci.
,
1
(
7
), p.
100114
.
123.
Zhang
,
S. S.
,
2006
, “
The Effect of the Charging Protocol on the Cycle Life of a Li-Ion Battery
,”
J. Power Sources
,
161
(
2
), pp.
1385
1391
.
124.
Notten
,
P. H. L.
,
Op het Veld
,
J. H. G.
, and
van Beek
,
J. R. G.
,
2005
, “
Boostcharging Li-Ion Batteries: A Challenging New Charging Concept
,”
J. Power Sources
,
145
(
1
), pp.
89
94
.
125.
Yang
,
X.-G.
,
Zhang
,
G.
,
Ge
,
S.
, and
Wang
,
C.-Y.
,
2018
, “
Fast Charging of Lithium-Ion Batteries at All Temperatures
,”
Proc. Natl. Acad. Sci. U. S. A.
,
115
(
28
), pp.
7266
7271
.
126.
Hasan
,
M. F.
,
Chen
,
C.-F.
,
Shaffer
,
C. E.
, and
Mukherjee
,
P. P.
,
2015
, “
Analysis of the Implications of Rapid Charging on Lithium-Ion Battery Performance
,”
J. Electrochem. Soc.
,
162
(
7
), p.
A1382
.
127.
Zhan
,
J.
,
Deng
,
Y.
,
Ren
,
J.
,
Gao
,
Y.
,
Liu
,
Y.
,
Rao
,
S.
,
Li
,
W.
, and
Gao
,
Z.
,
2023
, “
Cell Design for Improving Low-Temperature Performance of Lithium-Ion Batteries for Electric Vehicles
,”
Batteries
,
9
(
7
), p.
373
.
128.
Liu
,
K.
,
Liu
,
Y.
,
Lin
,
D.
,
Pei
,
A.
, and
Cui
,
Y.
,
2018
, “
Materials for Lithium-Ion Battery Safety
,”
Sci. Adv.
,
4
(
6
).
129.
Gao
,
Z.
,
Rao
,
S.
,
Zhang
,
T.
,
Gao
,
F.
,
Xiao
,
Y.
,
Shali
,
L.
,
Wang
,
X.
, et al
,
2022
, “
Bioinspired Thermal Runaway Retardant Capsules for Improved Safety and Electrochemical Performance in Lithium‐Ion Batteries
,”
Adv. Sci.
,
9
(
5
).
130.
Chen
,
S.
,
Wei
,
X.
,
Zhang
,
G.
,
Wang
,
X.
,
Zhu
,
J.
,
Feng
,
X.
,
Dai
,
H.
, and
Ouyang
,
M.
,
2023
, “
All-Temperature Area Battery Application Mechanism, Performance, and Strategies
,”
The Innovation
,
4
(
4
), p.
100465
.
131.
Chen
,
Y.
,
Su
,
D.
,
Chen
,
Y.
,
Zhu
,
Z.
, and
Li
,
W.
,
2021
, “
Three-Phase Interface-Assisted Advanced Electrochemistry-Related Applications
,”
Cell Reports Phys. Sci.
,
2
(
10
), p.
100602
.
132.
Chen
,
Y.
,
Zhu
,
Z.
,
Tian
,
Y.
, and
Jiang
,
L.
,
2021
, “
Rational ion Transport Management Mediated Through Membrane Structures
,”
Exploration
,
1
(
2
).
You do not currently have access to this content.