Abstract

Fast charging has become the norm for various electronic products. The research on the state of health prediction of fast-charging lithium-ion batteries deserves more attention. In this paper, a model-data fusion state of health prediction method which can reflect the degradation mechanism of fast-charging battery is proposed. First, based on the Arrhenius model, the log-power function (LP) model and log-linear (LL) model related to the fast-charging rate are established. Second, combined with Gaussian process regression prediction, a particle filter is used to update the parameters of models in real-time. Compared with the single Gaussian process regression, the average root-mean-square error of LP and LL is reduced by 71.56% and 69.11%, respectively. Finally, the sensitivity and superiority of the two models are analyzed by using Sobol method, Akaike and Bayesian information criterion. The results show that the two models are more suitable for fast-charging lithium batteries than the traditional Arrhenius model, and LP model is better than LL model.

References

1.
The China Association of Passenger Transport (CPCA) (EB/OL), http://data.cpcaauto.com/FuelMarket, Accessed February 8, 2023.
2.
Xie
,
W.
,
Liu
,
X.
,
He
,
R.
,
Li
,
Y.
,
Gao
,
X.
,
Li
,
X.
,
Peng
,
Z.
,
Feng
,
S.
,
Feng
,
X.
, and
Yang
,
S.
,
2020
, “
Challenges and Opportunities Toward Fast-Charging of Lithium-Ion Batteries
,”
J. Energy Storage
,
32
, p.
101837
.
3.
Zhou
,
R.
,
Zhu
,
R.
,
Huang
,
C.-G.
, and
Peng
,
W.
,
2022
, “
State of Health Estimation for Fast-Charging Lithium-Ion Battery Based on Incremental Capacity Analysis
,”
J. Energy Storage
,
51
, p.
104560
.
4.
TAF 083-2022, Universal Fast Charging Specification for Mobile Devices, China MIIT, 2022.
5.
Pinson
,
M. B.
, and
Bazant
,
M. Z.
,
2013
, “
Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction
,”
J. Electrochem. Soc.
,
160
(
2
), pp.
A243
A250
.
6.
Gao
,
T.
,
Bai
,
J.
,
Ouyang
,
D.
,
Wang
,
Z.
,
Bai
,
W.
,
Mao
,
N.
, and
Zhu
,
Y.
,
2023
, “
Effect of Aging Temperature on Thermal Stability of Lithium-Ion Batteries: Part A—High-Temperature Aging
,”
Renew. Energy
,
203
, pp.
592
600
.
7.
Zhang
,
D.
,
Li
,
L.
,
Zhang
,
W.
,
Cao
,
M.
,
Qiu
,
H.
, and
Ji
,
X.
,
2023
, “
Research Progress on Electrolytes for Fast-Charging Lithium-Ion Batteries
,”
Chin. Chem. Lett.
,
34
(
1
), p.
107122
.
8.
Bose
,
B.
,
Garg
,
A.
,
Panigrahi
,
B. K.
, and
Kim
,
J.
,
2022
, “
Study on Li-Ion Battery Fast Charging Strategies: Review, Challenges and Proposed Charging Framework
,”
J. Energy Storage
,
55
, p.
105507
.
9.
Xu
,
X.
,
Tang
,
S.
,
Ren
,
H.
,
Han
,
X.
,
Wu
,
Y.
,
Lu
,
L.
,
Feng
,
X.
, et al
,
2022
, “
Joint State Estimation of Lithium-Ion Batteries Combining Improved Equivalent Circuit Model With Electrochemical Mechanism and Diffusion Process
,”
J. Energy Storage
,
56
, p.
106135
.
10.
Liu
,
F.
,
Shao
,
C.
,
Su
,
W.
, and
Liu
,
Y.
,
2022
, “
Online Joint Estimator of Key States for Battery Based on a New Equivalent Circuit Model
,”
J. Energy Storage
,
52
, p.
104780
.
11.
Chang
,
C.
,
Wang
,
S.
,
Tao
,
C.
,
Jiang
,
J.
,
Jiang
,
Y.
, and
Wang
,
L.
,
2022
, “
An Improvement of Equivalent Circuit Model for State of Health Estimation of Lithium-Ion Batteries Based on Mid-Frequency and Low-Frequency Electrochemical Impedance Spectroscopy
,”
Measurement
,
202
, p.
111795
.
12.
Wang
,
J.
,
Jia
,
Y.
,
Yang
,
N.
,
Lu
,
Y.
,
Shi
,
M.
,
Ren
,
X.
, and
Lu
,
D.
,
2022
, “
Precise Equivalent Circuit Model for Li-Ion Battery by Experimental Improvement and Parameter Optimization
,”
J. Energy Storage
,
52
, p.
104980
.
13.
Liu
,
S.-X.
,
Zhou
,
Y.-F.
,
Liu
,
Y.-L.
,
Lian
,
J.
, and
Huang
,
L.-J.
,
2021
, “
A Method for Battery Health Estimation Based on Charging Time Segment
,”
Energies
,
14
(
9
), p.
2612
.
14.
Hou
,
Y.
,
Peng
,
Y.
, and
Liu
,
D.
,
2022
, “
Accelerated Capacity Model of Lithium-Ion Battery Based on Non-Linear Polynomial Method With Stress Coupling Analysis Under Two Electrical Variables
,”
Measurement
,
196
, p.
111283
.
15.
Park
,
S. W.
,
Lee
,
H.
, and
Won
,
Y. S.
,
2022
, “
A Novel Aging Parameter Method for Online Estimation of Lithium-Ion Battery States of Charge and Health
,”
J. Energy Storage
,
48
, p.
103987
.
16.
Liu
,
P.
,
Wu
,
Y.
,
She
,
C.
,
Wang
,
Z.
, and
Zhang
,
Z.
,
2022
, “
Comparative Study of Incremental Capacity Curve Determination Methods for Lithium-Ion Batteries Considering the Real-World Situation
,”
IEEE Trans. Power Electron.
,
37
(
10
), pp.
12563
12576
.
17.
Saxena
,
S.
,
Xing
,
Y.
,
Kwon
,
D.
, and
Pecht
,
M.
,
2019
, “
Accelerated Degradation Model for C-Rate Loading of Lithium-Ion Batteries
,”
Int. J. Electr. Power Energy Syst.
,
107
, pp.
438
445
.
18.
Shi
,
J.
,
Rivera
,
A.
, and
Wu
,
D.
,
2022
, “
Battery Health Management Using Physics-Informed Machine Learning: Online Degradation Modeling and Remaining Useful Life Prediction
,”
Mech. Syst. Signal Process
,
179
, p.
109347
.
19.
Redondo-Iglesias
,
E.
,
Venet
,
P.
, and
Pelissier
,
S.
,
2018
, “
Global Model for Self-Discharge and Capacity Fade in Lithium-Ion Batteries Based on the Generalized Eyring Relationship
,”
IEEE Trans. Veh. Technol.
,
67
(
1
), pp.
104
113
.
20.
Liu
,
Z.
,
Zhao
,
J.
,
Wang
,
H.
, and
Yang
,
C.
,
2020
, “
A New Lithium-Ion Battery SOH Estimation Method Based on an Indirect Enhanced Health Indicator and Support Vector Regression in PHMS
,”
Energies
,
13
(
4
), p.
830
.
21.
Tian
,
Y.
,
He
,
J.
,
Peng
,
Z.
,
Guan
,
Y.
, and
Wu
,
L.
,
2022
, “
Lithium-Ion Battery Degradation and Capacity Prediction Model Considering Causal Feature
,”
IEEE Trans. Transp. Electrif.
,
8
(
3
), pp.
3630
3647
.
22.
Hu
,
X.
,
Che
,
Y.
,
Lin
,
X.
, and
Onori
,
S.
,
2021
, “
Battery Health Prediction Using Fusion-Based Feature Selection and Machine Learning
,”
IEEE Trans. Transp. Electrif.
,
7
(
2
), pp.
382
398
.
23.
Shu
,
X.
,
Shen
,
S.
,
Shen
,
J.
,
Zhang
,
Y.
,
Li
,
G.
,
Chen
,
Z.
, and
Liu
,
Y.
,
2021
, “
State of Health Prediction of Lithium-Ion Batteries Based on Machine Learning: Advances and Perspectives
,”
iScience
,
24
(
11
), p.
103265
.
24.
Li
,
L.
,
Li
,
Y.
,
Cui
,
W.
,
Chen
,
Z.
,
Wang
,
D.
,
Zhou
,
B.
, and
Hong
,
D.
,
2022
, “
A Novel Health Indicator for Online Health Estimation of Lithium-Ion Batteries Using Partial Incremental Capacity and Dynamic Voltage Warping
,”
J. Power Sources
,
545
, p.
231961
.
25.
Yan
,
L.
,
Peng
,
J.
,
Gao
,
D.
,
Wu
,
Y.
,
Liu
,
Y.
,
Li
,
H.
,
Liu
,
W.
, and
Huang
,
Z.
,
2022
, “
A Hybrid Method With Cascaded Structure for Early-Stage Remaining Useful Life Prediction of Lithium-Ion Battery
,”
Energy
,
243
, p.
123038
.
26.
Zhang
,
Q.
,
Li
,
X.
,
Zhou
,
C.
,
Zou
,
Y.
,
Du
,
Z.
,
Sun
,
M.
,
Ouyang
,
Y.
,
Yang
,
D.
, and
Liao
,
Q.
,
2021
, “
State-of-Health Estimation of Batteries in an Energy Storage System Based on the Actual Operating Parameters
,”
J. Power Sources
,
506
, p.
230162
.
27.
Pan
,
W.
,
Xu
,
T.
,
Chen
,
Q.
, and
Zhu
,
M.
,
2022
, “
An Integration and Selection Scheme for Capacity Estimation of Li-Ion Battery Based on Different State-of-Charge Intervals
,”
J. Energy Storage
,
53
, p.
105073
.
28.
Kong
,
J.
,
Yang
,
F.
,
Zhang
,
X.
,
Pan
,
E.
,
Peng
,
Z.
, and
Wang
,
D.
,
2021
, “
Voltage-Temperature Health Feature Extraction to Improve Prognostics and Health Management of Lithium-Ion Batteries
,”
Energy
,
223
, p.
120114
.
29.
He
,
N.
,
Qian
,
C.
,
Shen
,
C.
, and
Huangfu
,
Y.
,
2023
, “
A Fusion Framework for Lithium-Ion Batteries State of Health Estimation Using Compressed Sensing and Entropy Weight Method
,”
ISA Trans.
,
135
, pp.
585
604
.
30.
Han
,
X.
,
Wang
,
Z.
, and
Wei
,
Z.
,
2021
, “
A Novel Approach for Health Management Online-Monitoring of Lithium-Ion Batteries Based on Model-Data Fusion
,”
Appl. Energy
,
302
, p.
117511
.
31.
Severson
,
K. A.
,
Attia
,
P. M.
,
Jin
,
N.
,
Perkins
,
N.
,
Jiang
,
B.
,
Yang
,
Z.
,
Chen
,
M. H.
, et al
,
2019
, “
Data-Driven Prediction of Battery Cycle Life Before Capacity Degradation
,”
Nat. Energy
,
4
(
5
), pp.
383
391
.
32.
Lucu
,
M.
,
Martinez-Laserna
,
E.
,
Gandiaga
,
I.
,
Liu
,
K.
,
Camblong
,
H.
,
Widanage
,
W. D.
, and
Marco
,
J.
,
2020
, “
Data-Driven Nonparametric Li-Ion Battery Ageing Model Aiming at Learning From Real Operation Data—Part A: Storage Operation
,”
J. Energy Storage
,
30
, p.
101409
.
33.
Zhu
,
Y.
,
Zhu
,
J.
,
Jiang
,
B.
,
Wang
,
X.
,
Wei
,
X.
, and
Dai
,
H.
,
2023
, “
Insights on the Degradation Mechanism for Large Format Prismatic Graphite/LiFePO4 Battery Cycled Under Elevated Temperature
,”
J. Energy Storage
,
60
, p.
106624
.
34.
Lewerenz
,
M.
,
Münnix
,
J.
,
Schmalstieg
,
J.
,
Käbitz
,
S.
,
Knips
,
M.
, and
Sauer
,
D. U.
,
2017
, “
Systematic Aging of Commercial LiFePO4 |Graphite Cylindrical Cells Including a Theory Explaining Rise of Capacity During Aging
,”
J. Power Sources
,
345
, pp.
254
263
.
35.
Yeardley
,
A. S.
,
Bugryniec
,
P. J.
,
Milton
,
R. A.
, and
Brown
,
S. F.
,
2020
, “
A Study of the Thermal Runaway of Lithium-Ion Batteries: A Gaussian Process Based Global Sensitivity Analysis
,”
J. Power Sources
,
456
, p.
228001
.
You do not currently have access to this content.