Abstract

Understanding solid electrolyte interphase (SEI) is essential for the diagnosis of lithium-ion batteries because many aspects of battery performance such as safety and efficiency depend on these characteristics. LiF, Li2O, and Li2CO3 are important inorganic components of SEI. This electrode–electrolyte surface forms during the battery’s first charging/discharging cycle, preventing electrons’ movement through the electrolyte and stabilizing the lithium-ion battery. However, the concern is inorganic SEI components cause rate limitation of lithium-ion diffusivity through the SEI layer. Lithium-ion diffusivity through the SEI layer depends on many factors such as temperature, the width of the SEI layer, and the concentration/density of the layer. Lithium-ion diffusivity dependence on temperature, at working temperatures of lithium-ion batteries was observed at temperatures from 250 K to 400 K and diffusion coefficient data at higher temperatures have also been observed. Lithium-ion diffusivity at varying concentration/density was also observed in this paper using the reactive force field (ReaxFF) molecular dynamic simulation. To improve the lithium-ion diffusivity, vacancy defects were created in the inorganic components of the SEI layer LiF, Li2O, and Li2CO3 and the diffusion coefficient was obtained using the ReaxFF molecular dynamic simulations. Another approach to improve the lithium-ion diffusivity is doping alkali metal ions such Na, Ca, K, and Mg in the inorganic components of SEI layers of LiF, Li2O, and Li2CO3 and simulated using the universal force field (UFF), and the diffusion coefficient was observed.

References

1.
Benitez
,
L.
, and
Seminario
,
J. M.
,
2017
, “
Ion Diffusivity Through the Solid Electrolyte Interphase in Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
164
(
11
), pp.
E3159
E3170
.
2.
McDowell
,
M. T.
,
Lee
,
S. W.
,
Nix
,
W. D.
, and
Cui
,
Y.
,
2013
, “
25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batteries
,”
Adv. Mater.
,
25
(
36
), pp.
4966
4985
.
3.
Pinson
,
M. B.
, and
Bazant
,
M. Z.
,
2012
, “
Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction
,”
J. Electrochem. Soc.
,
160
(
2
), pp.
A243
A250
.
4.
Peled
,
E.
,
1979
, “
The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model
,”
J. Electrochem. Soc.
,
126
(
12
), pp.
2047
2051
.
5.
Peled
,
E.
,
Golodnitsky
,
D.
, and
Ardel
,
G.
,
1997
, “
Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes
,”
J. Electrochem. Soc.
,
144
(
8
), pp.
L208
L210
.
6.
An
,
S. J.
,
Li
,
J.
,
Daniel
,
C.
,
Mohanty
,
D.
,
Nagpure
,
S.
, and
Wood
,
D. L.
,
2016
, “
The State of Understanding of the Lithium-Ion-Battery Graphite Solid Electrolyte Interphase (SEI) and Its Relationship to Formation Cycling
,”
Carbon
,
105
, pp.
52
76
.
7.
Verma
,
P.
,
Maire
,
P.
, and
Novák
,
P.
,
2010
, “
A Review of the Features and Analyses of the Solid Electrolyte Interphase in Li-Ion Batteries
,”
Electrochim Acta
,
55
(
22
), pp.
6332
6341
.
8.
Winter
,
M.
,
2009
, “
The Solid Electrolyte Interphase – The Most Important and the Least Understood Solid Electrolyte in Rechargeable Li Batteries
,”
Z. Phys. Chem.
,
223
(
10–11
), pp.
1395
1406
.
9.
Vander Ven
,
A.
,
Deng
,
Z.
,
Banerjee
,
S.
, and
Ong
,
S. P.
,
2020
, “
Rechargeable Alkali-Ion Battery Materials: Theory and Computation
,”
Chem. Rev.
,
120
(
14
), pp.
6977
7019
, PMID: 32022553.
10.
Soto
,
F. A.
,
Marzouk
,
A.
,
El-Mellouhi
,
F.
, and
Balbuena
,
P. B.
,
2018
, “
Understanding Ionic Diffusion Through SEI Components for Lithium-Ion and Sodium-Ion Batteries: Insights From First-Principles Calculations
,”
Chem. Mater.
,
30
(
10
), pp.
3315
3322
.
11.
Yildirim
,
H.
,
Kinaci
,
A.
,
Chan
,
M. K. Y.
, and
Greeley
,
J. P.
,
2015
, “
First-Principles Analysis of Defect Thermodynamics and Ion Transport in Inorganic SEI Compounds: LiF and NaF
,”
ACS Appl. Mater. Interfaces
,
7
(
34
), pp.
18985
18996
, PMID: 26255641.
12.
Guan
,
P.
,
Liu
,
L.
, and
Lin
,
X.
,
2015
, “
Simulation and Experiment on Solid Electrolyte Interphase (SEI) Morphology Evolution and Lithium-Ion Diffusion
,”
J. Electrochem. Soc.
,
162
(
9
), pp.
A1798
A1808
.
13.
Tasaki
,
K.
,
Goldberg
,
A.
,
Lian
,
J.-J.
,
Walker
,
M.
,
Timmons
,
A.
, and
Harris
,
S. J.
,
2009
, “
Solubility of Lithium Salts Formed on the Lithium-Ion Battery Negative Electrode Surface in Organic Solvents
,”
J. Electrochem. Soc.
,
156
(
12
), p.
A1019
.
14.
Wang
,
A.
,
Kadam
,
S.
,
Li
,
H.
,
Shi
,
S.
, and
Qi
,
Y.
,
2018
, “
Review on Modeling of the Anode Solid Electrolyte Interphase (SEI) for Lithium-Ion Batteries
,”
npj Comput. Mater.
,
4
, pp.
1
26
. http://dx.doi.org/10.1038/s41524-018-0064-0
15.
Rappe
,
A. K.
,
Casewit
,
C. J.
,
Colwell
,
K. S.
,
Goddard
,
W. A.
, and
Skiff
,
W. M.
,
1992
, “
UFF, A Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations
,”
J. Am. Chem. Soc.
,
114
(
25
), pp.
10024
10035
.
16.
Islam
,
M. M.
,
Ostadhossein
,
A.
,
Borodin
,
O.
,
Yeates
,
A. T.
,
Tipton
,
W. W.
,
Hennig
,
R. G.
,
Kumar
,
N.
, and
van Duin
,
A. C. T.
,
2015
, “
ReaxFF Molecular Dynamics Simulations on Lithiated Sulfur Cathode Materials
,”
Phys. Chem. Chem. Phys.
,
17
, pp.
3383
3393
.
17.
van Duin
,
A. C. T.
,
Dasgupta
,
S.
,
Lorant
,
F.
, and
Goddard
,
W. A.
,
2001
, “
ReaxFF: A Reactive Force Field for Hydrocarbons
,”
J. Phys. Chem. A
,
105
(
41
), pp.
9396
9409
.
18.
Senftle
,
T. P.
,
Hong
,
S.
,
Islam
,
Md. M.
,
Kylasa
,
S. B.
,
Zheng
,
Y.
,
Shin
,
Y. K.
,
Junkermeier
,
C.
, et al.,
2016
, “
The ReaxFF Reactive Force-Field: Development, Applications and Future Directions
,”
npj Comput. Mater.
,
2
, p.
14
.
19.
Chen
,
Y. C.
,
Ouyang
,
C. Y.
,
Song
,
L. J.
, and
Sun
,
Z. L.
,
2011
, “
Electrical and Lithium Ion Dynamics in Three Main Components of Solid Electrolyte Interphase From Density Functional Theory Study
,”
J. Phys. Chem. C
,
115
(
14
), pp.
7044
7049
.
20.
Bergerhoff
,
G.
,
Brown
,
I.
,
Allen
,
F.
, et al.,
1988
, “Crystallographic Databases,”
Acta Crysta
,
F. H.
Allen
,
G.
Gergerhoff
, and
R.
Sievers
,, eds.,
C44
, pp.
1153
1154
.
21.
Gupta
,
M. K.
,
Singh
,
B.
,
Goel
,
P.
,
Mittal
,
R.
,
Rols
,
S.
, and
Chaplot
,
S. L.
,
2019
, “
Lithium Diffusion in Li2X (X = O, S, and Se): Ab Initio Simulations and Inelastic Neutron Scattering Measurements
,”
Phys. Rev. B
,
99
, p.
224304
.
22.
Annamareddy
,
A.
, and
Eapen
,
J.
,
2017
, “
Ion Hopping and Constrained Li Diffusion Pathways in the Superionic State of Antifluorite Li2O
,”
Entropy
,
19
(
5
), p.
227
.
23.
Zheng
,
J.
,
Ju
,
Z.
,
Zhang
,
B.
,
Nai
,
J.
,
Liu
,
T.
,
Liu
,
Y.
,
Xie
,
Q.
,
Zhang
,
W.
,
Wang
,
Y.
, and
Tao
,
X.
,
2021
, “
Lithium Ion Diffusion Mechanism on the Inorganic Components of the Solid–Electrolyte Interphase
,”
J. Mater. Chem. A
,
9
, pp.
10251
10259
.
24.
Ahmad
,
Z.
,
Venturi
,
V.
,
Hafiz
,
H.
, and
Viswanathan
,
V.
,
2021
, “
Interfaces in Solid Electrolyte Interphase: Implications for Lithium-Ion Batteries
,”
The Journal of Physical Chemistry C
,
125
(
21
), pp.
11301
11309
.
25.
Shi
,
S.
,
Lu
,
P.
,
Liu
,
Z.
,
Qi
,
Y.
,
Hector
,
L. G.
,
Li
,
H.
, and
Harris
,
S. J.
,
2012
, “
Direct Calculation of Li-Ion Transport in the Solid Electrolyte Interphase
,”
J. Am. Chem. Soc.
,
134
(
37
), pp.
15476
15487
, PMID: 22909233.
26.
Mehrer
,
H.
,
2007
,
Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes
(
Springer Series in Solid-State Sciences
),
Springer
,
Berlin
.
27.
Tan
,
J.
,
Matz
,
J.
,
Dong
,
P.
,
Shen
,
J.
, and
Ye
,
M.
,
2021
, “
A Growing Appreciation for the Role of LiF in the Solid Electrolyte Interphase
,”
Adv. Energy Mater.
,
11
, p.
2100046
.
You do not currently have access to this content.