Abstract

With the retirement of a large number of lithium-ion batteries from electric vehicles, their reuse has received increasing attention. However, a retired battery pack is not suitable for direct reuse due to the poor consistency of in-pack batteries. This paper proposes a method of retired lithium-ion battery screening based on support vector machine (SVM) with a multi-class kernel function. First, ten new NCR18650B batteries were used to carry out the aging experiments for collecting the main parameters, such as capacity, voltage, and direct current resistance. Second, an SVM based on a multi-class kernel function was proposed to screen retired batteries. To improve the screening efficiency, a capacity/voltage second-order conductance curve was adopted to extract their capacity features quickly, and four new feature points were selected as the input of the SVM to classify retired batteries. Finally, the retired batteries are accurately divided into four classes by the trained model, and the classification accuracy can reach 97.0%. Compared with the traditional method, the feature extraction time can be reduced by four-fifths, and the screening efficiency is greatly improved.

References

1.
Ji
,
D.
, and
Gan
,
H.
,
2022
, “
Effects of Providing Total Cost of Ownership Information on Below-40 Young Consumers’ Intent to Purchase an Electric Vehicle: A Case Study in China
,”
Energy Policy
,
165
, p.
112954
.
2.
Cusenza
,
M. A.
,
Guarino
,
F.
,
Longo
,
S.
,
Mistretta
,
M.
, and
Cellura
,
M.
,
2019
, “
Reuse of Electric Vehicle Batteries in Buildings: An Integrated Load Match Analysis and Life Cycle Assessment Approach
,”
Energy Build.
,
186
, pp.
339
354
.
3.
Hidalgo
,
C. G.
,
Javier Ramirez
,
F.
,
Olivares
,
T.
, and
Sanchez
,
L. R.
,
2020
, “
The Adoption of Internet of Things in a Circular Supply Chain Framework for the Recovery of WEEE: The Case of Lithium-Ion Electric Vehicle Battery Packs
,”
Waste Manage.
,
103
, pp.
32
44
.
4.
Sun
,
S.
,
Jin
,
C.
,
He
,
W.
,
Li
,
G.
,
Zhu
,
H.
, and
Huang
,
J.
,
2021
, “
Management Status of Waste Lithium-Ion Batteries in China and a Complete Closed-Circuit Recycling Process
,”
Sci. Total Environ.
,
776
, p.
145913
.
5.
Hu
,
X.
,
Deng
,
X.
,
Wang
,
F.
,
Deng
,
Z.
,
Lin
,
X.
,
Teodorescu
,
R.
, and
Pecht
,
M. G.
,
2022
, “
A Review of Second-Life Lithium-Ion Batteries for Stationary Energy Storage Applications
,”
Proc. IEEE
,
110
(
6
), pp.
735
753
.
6.
Alamerew
,
Y. A.
, and
Brissaud
,
D.
,
2020
, “
Modelling Reverse Supply Chain Through System Dynamics for Realizing the Transition Towards the Circular Economy: A Case Study on Electric Vehicle Batteries
,”
J. Cleaner Prod.
,
254
, p.
120025
.
7.
Zhang
,
Y.
,
Li
,
Y.
,
Tao
,
Y.
,
Ye
,
J.
,
Pan
,
A.
,
Li
,
X.
,
Liao
,
Q.
, and
Wang
,
Z.
,
2020
, “
Performance Assessment of Retired EV Battery Modules for Echelon Use
,”
Energy
,
193
, p.
116555
.
8.
Wang
,
N.
,
Garg
,
A.
,
Su
,
S.
,
Mou
,
J.
,
Gao
,
L.
, and
Li
,
W.
,
2022
, “
Echelon Utilization of Retired Power Lithium-Ion Batteries: Challenges and Prospects
,”
Batteries
,
8
(
8
), p.
96
.
9.
Omrani
,
M. M.
, and
Jannesari
,
H.
,
2019
, “
Economic and Environmental Assessment of Reusing Electric Vehicle Lithium-Ion Batteries for Load Leveling in the Residential, Industrial and Photovoltaic Power Plants Sectors
,”
Renew. Sustain. Energy Rev.
,
116
, p.
109413
.
10.
Yu
,
W.
,
Zheng
,
Y.
, and
Zhang
,
Y.
,
2022
, “
Carbon Emission Reduction by Echelon Utilization of Retired Vehicle Power Batteries in Energy Storage Power Stations
,”
World Electr. Veh. J.
,
13
(
8
), p.
144
.
11.
Che
,
Y.
,
Hu
,
X.
,
Lin
,
X.
,
Guo
,
J.
, and
Teodorescua
,
R.
,
2023
, “
Health Prognostics for Lithium-Ion Batteries: Mechanisms, Methods, and Prospects
,”
Energy Environ. Sci.
,
16
(
2
), pp.
338
371
.
12.
Wang
,
C.
,
Zhu
,
Y.
,
Gao
,
F.
,
Bu
,
X.
,
Chen
,
H.
,
Quan
,
T.
,
Xu
,
Y.
, and
Jiao
,
Q.
,
2022
, “
Internal Short Circuit and Thermal Runaway Evolution Mechanism of Fresh and Retired Lithium-Ion Batteries With LiFePO4 Cathode During Overcharge
,”
Appl. Energy
,
328
, p.
120224
.
13.
Lin
,
J.
,
Zhang
,
X.
,
Fan
,
E.
,
Chen
,
R.
,
Wuabc
,
F.
, and
Li
,
L.
,
2023
, “
Carbon Neutrality Strategies for Sustainable Batteries: From Structure, Recycle, Property to Application
,”
Energy Environ. Sci.
,
16
(
3
), pp.
745
791
.
14.
Chen
,
H.
,
Zhang
,
T.
,
Gao
,
Q.
,
Han
,
Z.
,
Jin
,
Y.
,
Li
,
L.
,
Yang
,
K.
,
Xu
,
Y.
,
Liu
,
X.
,
Xu
,
X.
, and
Wang
,
S.
,
2022
, “
Assessment and Management of Health Status in Full Life Cycle of Echelon Utilization for Retired Power Lithium Batteries
,”
J. Cleaner Prod.
,
379
, p.
134583
.
15.
Mu
,
N.
,
Wang
,
Y.
,
Chen
,
Z.-S.
,
Xin
,
P.
,
Deveci
,
M.
, and
Pedrycz
,
W.
,
2023
, “
Multi-objective Combinatorial Optimization Analysis of the Recycling of Retired New Energy Electric Vehicle Power Batteries in a Sustainable Dynamic Reverse Logistics Network
,”
Environ. Sci. Pollut. Res.
,
30
(
16
), pp.
47580
47601
.
16.
Zheng
,
Y.
,
Hu
,
J.
,
Chen
,
J.
, and
Deng
,
H.
,
2023
, “
State of Health Estimation for Lithium Battery Random Charging Process Based on CNN-GRU Method
,”
Energy Rep.
,
9
(
S3
), pp.
1
10
.
17.
Braco
,
E.
,
Martin
,
I. S.
,
Sanchis
,
P.
, and
Ursúa
,
A.
,
2022
, “
Health Indicator Selection for State of Health Estimation of Second-Life Lithium-Ion Batteries Under Extended Ageing
,”
J. Energy Storage
,
55
, p.
105366
.
18.
Wang
,
Y.
,
Huang
,
H.
, and
Wang
,
H.
,
2023
, “
Rapid-Regroup Strategy for Retired Batteries Based on Short-Time Dynamic Voltage and Electrochemical Impedance Spectroscopy
,”
J. Energy Storage
,
63
, p.
107102
.
19.
Ni
,
Y.
,
Xu
,
J.
,
Zhu
,
C.
, and
Pei
,
L.
,
2022
, “
Accurate Residual Capacity Estimation of Retired LiFePO4 Batteries Based on Mechanism and Data-Driven Model
,”
Appl. Energy
,
305
, p.
117922
.
20.
Ran
,
A.
,
Zhou
,
Z.
,
Chen
,
S.
,
Nie
,
P.
,
Qian
,
K.
,
Li
,
Z.
,
Li
,
B.
,
Sun
,
H.
,
Kang
,
F.
,
Zhang
,
X.
, and
Wei
,
G.
,
2020
, “
Data-Driven Fast Clustering of Second-Life Lithium-Ion Battery: Mechanism and Algorithm
,”
Adv. Theory Simul.
,
3
(
8
), p.
2000109
.
21.
Zhang
,
C.
,
Zhao
,
S.
,
Yang
,
Z.
, and
Chen
,
Y.
,
2022
, “
A Reliable Data-Driven State-of-Health Estimation Model for Lithium-Ion Batteries in Electric Vehicles
,”
Front. Energy Res.
,
10
, p.
1013800
.
22.
Lai
,
X.
,
Qiao
,
D.
,
Zheng
,
Y.
,
Ouyang
,
M.
,
Han
,
X.
, and
Zhou
,
L.
,
2019
, “
A Rapid Screening and Regrouping Approach Based on Neural Networks for Large-Scale Retired Lithium-Ion Cells in Second-Use Applications
,”
J. Cleaner Prod.
,
213
, pp.
776
791
.
23.
Vapnik
,
V.N.
,
1998
,
Statistical Learning Theory
,
Wiley Press
,
New York
, p.
493
.
24.
Patil
,
M.A.
,
Tagade
,
P.
,
Hariharan
,
K.S.
,
Kolake
,
S.M.
,
Song
,
T.
,
Yeo
,
T.
, and
Doo
,
S.
,
2015
, “
A Novel Multistage Support Vector Machine Based Approach for Li Ion Battery Remaining Useful Life Estimation
,”
Appl. Energy
,
159
, pp.
285
297
.
25.
Feng
,
X.
,
Weng
,
C.
,
He
,
X.
, and
Han
,
X.
,
2019
, “
Online State-of-Health Estimation for Li-Ion Battery Using Partial Charging Segment Based on Support Vector Machine
,”
IEEE Trans. Veh. Technol.
,
68
(
9
), pp.
8583
8592
.
26.
Guo
,
H.
, and
Wang
,
W.
,
2015
, “
An Active Learning-Based SVM Multi-class Classification Model
,”
Pattern Recognit.
,
48
(
5
), pp.
1577
1597
.
27.
Zhou
,
Z.
,
Duan
,
B.
,
Kang
,
Y.
,
Shang
,
Y.
,
Cui
,
N.
,
Chang
,
L.
, and
Zhang
,
C.
,
2020
, “
An Efficient Screening Method for Retired Lithium-Ion Batteries Based on Support Vector Machine
,”
J. Cleaner Prod.
,
267
, p.
121882
.
28.
Zhang
,
Y.
,
Zhou
,
H.
,
Kang
,
Y.
,
Zhang
,
C.
, and
Duan
,
B.
,
2020
, “
A Quick Screening Approach Based on Fuzzy C-Means Algorithm for the Second Usage of Retired Lithium-Ion Batteries
,”
IEEE Trans. Transp. Electrif.
,
7
(
2
), pp.
474
484
.
You do not currently have access to this content.