Abstract

We present a simple method for producing SiO2-modified LiNi0.5Mn1.5O4 (LNMO) cathode materials. Manganese carbonate was directly mixed with nickel nitrate and lithium hydroxide, and a spherical structure LNMO cathode material was prepared by two-step calcination, then ethyl orthosilicate and LNMO powder were simply mixed in solid and liquid phases to prepare SiO2-coated LNMO material. The effect of SiO2 coating on the structure of LNMO was studied by diffraction of X-rays, scanning electron microscope (SEM), transmission electron microscope (TEM), and thermogravimetric analysis and differential scanning calorimetry. An amorphous SiO2 coating layer developed on the surface of the LNMO particles in the modification and this could alleviate the strike of hydrogen fluoride (HF) caused by electrolyte decomposition as well as the development of a solid electrolyte interphase. The electrochemical performance of the coated material was as follows: when the amount of SiO2 was 0 wt%, 1 wt%, 2 wt%, and 3 wt%, the initial discharge capacity of the sample was 98.2, 84.1, 101.3, and 89.8mAh/g, respectively. After 50 chargedischarge cycles, the capacity retention rates are 92.7%, 66.8%, 97.9%, and 93.8%, respectively. The cyclic stability of the samples can be significantly improved when the SiO2 coating amount is 2 wt% and 3 wt%, indicating that SiO2 coating can not only improve the discharge-specific capacity of the material but also improve its cyclic stability.

References

1.
Armand
,
M.
, and
Tarascon
,
J. M.
,
2008
, “
Building Better Batteries
,”
Nature
,
451
(
7179
), pp.
652
657
.
2.
Tarascon J
,
M.
, and
Armand
,
M.
,
2001
, “
Issues and Challenges Facing Rechargeable Lithium Batteries
,”
Nature
,
414
(
6861
), pp.
359
367
.
3.
Wronski
,
Z.
,
2001
, “
Materials for Rechargeable Batteries and Clean Hydrogen Energy Sources
,”
Int. Mater. Rev.
,
46
(
1
), pp.
1
49
.
4.
Li
,
S.
,
Geng
,
S.
,
Zhao
,
J.
, and
Cui
,
X.
,
2018
, “
Synthesis of LiNi0.5Mn1.5O4 Nano/Microspheres With Adjustable Hollow Structures for Lithium-Ion Battery
,”
Ionics
,
24
(
3
), pp.
681
688
.
5.
Mokhtar
,
N.
,
Idris
,
N.
, and
Din
,
M.
,
2018
, “
Molten Salt Synthesis of Disordered Spinel LixNi0.5Mn1.5O4 With Improved Electro-Chemical Performance for Lithium-Ion Batteries
,”
Int. J. Electrochem. Sci.
,
13
(
11
), pp.
10113
10126
.
6.
Jayawardana
,
M.
, and
Lucht
,
B.
,
2021
, “
Comparison of Failure Mechanisms in Lithium Manganese Oxide and Lithium Nickel Manganese Oxide Spinel Cathodes
,”
Electrochemical Society Meeting Abstracts
,
239
(No.
2
, pp.
129
129
),
The Electrochemical Society, Inc
.
7.
Ting-Feng
,
Y.
,
Chen
,
B.
,
Zhu
,
Y.-R.
,
Li
,
X.-Y.
, and
Zhu
,
R.-S.
,
2014
, “
Enhanced Rate Performance of Molybdenum-Doped Spinel LiNi0.5Mn1.5O4 Cathode Materials for Lithium-Ion Battery
,”
J. Power Sources
,
247
(
1
), pp.
778
785
.
8.
Xue
,
Y.
,
Zheng
,
L.
,
Wang
,
J.
,
Zhou
,
J.
,
Yu
,
F.
,
Zhou
,
G.
, and
Wang
,
Z.
,
2019
, “
Improving Electrochemical Performance of High-Voltage Spinel LiNi0.5Mn1.5O4 Cathode by Cobalt Surface Modification
,”
ACS Appl. Energy Mater.
,
2
(
4
), pp.
2982
2989
.
9.
Wang
,
J.
,
Nie
,
P.
,
Xu
,
G.
,
Jiang
,
J.
,
Wu
,
Y.
,
Fu
,
R.
,
Dou
,
H.
, and
Zhang
,
X.
,
2018
, “
High-Voltage LiNi0.45Cr0.1Mn1.45O4 Cathode With Superlong Cycle Performance for Wide Temperature Lithium-Ion Batteries
,”
Adv. Funct. Mater.
,
28
(
4
), p.
1704808
.
10.
Lan
,
L.
,
Li
,
S.
,
Li
,
J.
,
Lu
,
L.
,
Lu
,
Y.
,
Huang
,
S.
,
Xu
,
S.
,
Pan
,
C.
, and
Zhao
,
F.
,
2018
, “
Enhancement of the Electrochemical Performance of the Spinel Structure LiNi0.5-xGaxMn1.5O4 Cathode Material by Ga Doping
,”
Nanoscale Res. Lett.
,
13
(
1
), pp.
251
261
.
11.
Liu
,
D.
,
Bai
,
Y.
,
Zhao
,
S.
, and
Zhang
,
W.
,
2012
, “
Improved Cycling Performance of 5 V Spinel LiNi0.5Mn1.5O4 by Amorphous FePO4 Coating
,”
J. Power Sources
,
219
(
1
), pp.
333
338
.
12.
Shu
,
Y.
,
Xie
,
Y.
,
Yan
,
W.
,
Meng
,
S.
,
Sun
,
D.
,
Jin
,
Y.
, and
Xiang
,
L.
,
2020
, “
Tuning the Ratio of Al2O3 to LiAlO2 in the Composite Coating Layer for High Performance LiNi0.5Mn1.5O4 Materials
,”
Ceram. Int.
,
46
(
10
), pp.
14840
14846
.
13.
Kim
,
J.
,
Kim
,
D.
,
Oh
,
D.
,
Lee
,
H.
,
Kim
,
J.
,
Lee
,
J.
, and
Jung
,
Y.
,
2015
, “
Surface Chemistry of LiNi0.5Mn1.5O4 Particles Coated by Al2O3 Using Atomic Layer Deposition for Lithium-Ion Batteries-Science Direct
,”
J. Power Sources
,
274
(
15
), pp.
1254
1262
.
14.
Huang
,
X.
,
Chen
,
K.
, and
Liu
,
Y.
,
2019
, “
Enhancement of LiNi0.5Mn1.5O4 Cathode Materials Through Interfacial Modification of Amorphous Al2O3 in Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
166
(
3
), pp.
A5081
A5089
.
15.
Tao
,
S.
,
Kong
,
F.
,
Wu
,
C.
,
Su
,
X.
,
Xiang
,
T.
,
Chen
,
S.
,
Hou
,
H.
, et al.
,
2017
, “
Nanoscale TiO2 Membrane Coating Spinel LiNi0.5Mn1.5O4 Cathode Material for Advanced Lithium-Ion Batteries
,”
J. Alloys Compd.
,
705
(
25
), pp.
413
419
.
16.
Mu
,
J.
,
Zhang
,
L.
,
He
,
R.
,
Li
,
X.
,
Bai
,
X.
,
Tian
,
L.
,
Zhang
,
X.
,
Wei
,
A.
, and
Liu
,
Z.
,
2021
, “
Enhancing the Electrochemical Performance of LiNi0.5Mn1.5O4 Cathode Material by a Conductive LaCoO3 Coating
,”
J. Alloys Compd.
,
865
(
1
), pp.
158629
158642
.
17.
Jang
,
W.
,
Kim
,
M.
,
Kim
,
S.
,
Aravindan
,
V.
,
Kim
,
W.
,
Yoon
,
W.
, and
Lee
,
Y.
,
2014
, “
Understanding the Exceptional Elevated Temperature Performance of High Voltage LiNi0.5Mn1.5O4 Cathodes by LiFePO4 Modification
,”
Electrochim. Acta
,
137
(
10
), pp.
404
410
.
18.
Li
,
Y.
,
Wang
,
D.
,
Xu
,
T.
,
Wu
,
M.
,
Pan
,
D.
,
Zhao
,
H.
, and
Bai
,
Y.
,
2018
, “
Stabilized Structural and Electrochemical Properties of LiNi0.5Mn1.5O4 via ZrF4 Nanolayer Modification for Li-Ion Batteries
,”
Solid State Ionics
,
324
(
15
), pp.
7
12
.
19.
Zhao
,
G.
,
Lin
,
Y.
,
Zhu
,
W.
,
Yang
,
W.
, and
Huang
,
Z.
,
2017
, “
Enhanced Electrochemical Performances of LiNi0.5Mn1.5O4 by Surface Modification With Cu Nanoparticles
,”
Hemi ska Industrial
,
67
(
1
), pp.
61
66
.
20.
Zhao Y
,
J.
,
Lv
,
Z.
,
Xu
,
T.
, and
Li
,
J.
,
2017
, “
SiO2 Coated Li1.2Ni0.2Mn0.6O2 as Cathode Materials With Rate Performance, HF Scavenging and Thermal Properties for Li-Ion Batteries
,”
J. Alloys Compd.
,
715
(
25
), pp.
105
111
.
21.
Yang
,
T.
,
Zhang
,
N.
,
Lang
,
Y.
, and
Sun
,
K.
,
2011
, “
Enhanced Rate Performance of Carbon-Coated LiNi0.5Mn1.5O4 Cathode Material for Lithium-Ion Batteries
,”
Electrochim. Acta
,
56
(
11
), pp.
4058
4064
.
22.
Wang
,
L.
,
Chen
,
D.
,
Wang
,
J.
,
Liu
,
G.
,
Wu
,
W.
, and
Liang
,
G.
,
2016
, “
Synthesis of LiNi0.5Mn1.5O4 Cathode Material With Improved Electro-Chemical Performances Through a Modified Solid-State Method
,”
Powder Technol. Int. J. Sci. Technol. Wet Dry Particul. Syst.
,
292
, pp.
203
209
.
23.
Chao
,
G.
,
Liu
,
H.
,
Hao
,
J.
,
Chen
,
Q.
,
Bi
,
S.
, and
Chen
,
L.
,
2018
, “
Enhanced Rate Performance of Nanosized RGO-LiNi0.5Mn1.5O4 Composites as Cathode Material by a Solid-State Assembly Method
,”
Ionics
,
25
(
1038
), pp.
71
79
.
24.
Fan
,
Y.
,
Wang
,
J.
,
Ye
,
X.
, and
Zhang
,
J.
,
2007
, “
Physical Properties and Electrochemical Performance of LiNi0.5Mn1.5O4 Cathode Material Prepared by a Coprecipitation Method
,”
Mater. Chem. Phys.
,
103
(
1
), pp.
19
23
.
25.
Ma
,
Y.
,
Wang
,
L.
,
Zuo
,
X.
, and
Nan
,
J.
,
2018
, “
Co-Precipitation Spray-Drying Synthesis and Electrochemical Performance of Stabilized LiNi0.5Mn1.5O4 Cathode Materials
,”
J. Solid State Electrochem.
,
22
(
7
), pp.
1963
1969
.
You do not currently have access to this content.