Abstract

In this study, based on the liquid cooling method, a confluence channel structure is proposed, and the heat generation model in the discharge process of three-dimensional battery module is established. The effects of channel structure, inlet mass flowrate, and coolant flow direction on the heat generation of the battery module were studied by control variable method. Simulation results show that the confluence channel structure (e) shows good cooling effect on the battery temperature when controlling the 5 C discharge of the battery module. In addition, compared with the straight channel under the same working condition. In the discharge process of battery module, average temperature amplitude in battery module decreased by 17.3%, the inlet and outlet pressure is reduced by 16.47%, and the maximum temperature amplitude is reduced by 20.3%. Effectively improve temperature uniformity and reduce pressure drop. The problem of uneven temperature distribution caused by uneven velocity distribution of coolant in traditional straight channel is improved. At the same time, the design of the confluence structure accelerates the heat transfer of the channel plate and provides a new idea for the design of the cooling channel.

References

1.
Chung
,
Y.
, and
Kim
,
M. S.
,
2019
, “
Thermal Analysis and Pack Level Design of Battery Thermal Management System With Liquid Cooling for Electric Vehicles
,”
Energy Convers. Manage.
,
196
, pp.
105
116
.
2.
Mahamud
,
R.
, and
Park
,
C.
,
2011
, “
Reciprocating Air Flow for Li-Ion Battery Thermal Management to Improve Temperature Uniformity
,”
J. Power Sources
,
196
(
13
), pp.
5685
5696
.
3.
Mo
,
X.
,
Hu
,
X.
,
Tang
,
J.
, and
Tian
,
H.
,
2019
, “
A Comprehensive Investigation on Thermal Management of Large-Capacity Pouch Cell Using Micro Heat Pipe Array
,”
Int. J. Energy Res.
,
43
(
13
), pp.
7444
7458
. .
4.
Greco
,
A.
,
Cao
,
D.
,
Jiang
,
X.
, and
Yang
,
H.
,
2014
, “
A Theoretical and Computational Study of Lithium-Ion Battery Thermal Management for Electric Vehicles Using Heat Pipes
,”
J. Power Sources
,
257
, pp.
344
355
.
5.
Xun
,
J.
,
Liu
,
R.
, and
Jiao
,
K.
,
2013
, “
Numerical and Analytical Modeling of Lithium Ion Battery Thermal Behaviors With Different Cooling Designs
,”
J. Power Sources
,
233
, pp.
47
61
.
6.
Pesaran
,
A. A.
,
2002
, “
Battery Thermal Models for Hybrid Vehicle Simulations
,”
J. Power Sources
,
110
(
2
), pp.
377
382
.
7.
Jaidi
,
J.
,
Chitta
,
S. D.
,
Akkaldevi
,
C.
,
Panchal
,
S.
,
Fowler
,
M.
, and
Fraser
,
R.
,
2022
, “
Performance Study on the Effect of Coolant Inlet Conditions for a 20 Ah LiFePO4 Prismatic Battery With Commercial Mini Channel Cold Plates
,”
Electrochem
,
3
(
2
), pp.
259
275
.
8.
Bais
,
A. R.
,
Subhedhar
,
D. G.
,
Joshi
,
N. C.
, and
Panchal
,
S.
,
2022
, “
Numerical Investigation on Thermal Management System for Lithium-Ion Battery Using Phase Change Material
,”
Mater. Today: Proc.
,
66
(
Part 4
), pp.
1726
1733
.
9.
Zhao
,
Z.
,
Panchal
,
S.
,
Kollmeyer
,
P.
, and
Emadi
,
A.
,
2022
, “
3D FEA Thermal Modeling With Experimentally Measured Loss Gradient of Large Format Ultra-Fast Charging Battery Module Used for EVs
,” SAE Technical Paper 2022-01-0711.
10.
Liang
,
Y.
,
Emadi
,
A.
,
Gross
,
O.
, and
Vidal
,
C.
,
2022
, “
A Comparative Study Between Physics, Electrical and Data Driven Lithium-Ion Battery Voltage Modeling Approaches
,” SAE Technical Paper 2022-01-0700.
11.
Liu
,
Y.
, and
Zhang
,
J.
,
2019
, “
Design a J-Type Air-Based Battery Thermal Management System Through Surrogate-Based Optimization
,”
Appl. Energy
,
252
, p.
252
. .
12.
Mohammadian
,
S. K.
, and
Zhang
,
Y.
,
2015
, “
Thermal Management Optimization of an Air-Cooled Li-Ion Battery Module Using Pin-Fin Heat Sinks for Hybrid Electric Vehicles
,”
J. Power Sources
,
273
(
C
), pp.
431
439
.
13.
Chen
,
K.
,
Chen
,
Y.
,
Li
,
Z.
,
Yuan
,
F.
, and
Wang
,
S.
,
2018
, “
Design of the Cell Spacings of Battery Pack in Parallel Air-Cooled Battery Thermal Management System
,”
Int. J. Heat Mass Transfer
,
127
, pp.
393
401
.
14.
Chen
,
K.
,
Song
,
M.
,
Wei
,
W.
, and
Wang
,
S.
,
2018
, “
Structure Optimization of Parallel Air-Cooled Battery Thermal Management System With U-Type Flow for Cooling Efficiency Improvement
,”
Energy
,
145
, pp.
603
613
.
15.
Chen
,
K.
,
Wang
,
S.
,
Song
,
M.
, and
Chen
,
L.
,
2017
, “
Configuration Optimization of Battery Pack in Parallel Air-Cooled Battery Thermal Management System Using an Optimization Strategy
,”
Appl. Therm. Eng.
,
123
, pp.
177
186
.
16.
Shi
,
S.
,
Xie
,
Y.
,
Li
,
M.
,
Yuan
,
Y.
,
Yu
,
J.
,
Wu
,
H.
,
Liu
,
B.
, and
Liu
,
N.
,
2017
, “
Non-Steady Experimental Investigation on an Integrated Thermal Management System for Power Battery With Phase Change Materials
,”
Energy Convers. Manage.
,
138
, pp.
84
96
.
17.
Ye
,
Y.
,
Shi
,
Y.
,
Saw
,
L. H.
, and
Tay
,
A. A. O.
,
2016
, “
Performance Assessment and Optimization of a Heat Pipe Thermal Management System for Fast Charging Lithium Ion Battery Packs
,”
Int. J. Heat Mass Transfer
,
92
, pp.
893
903
.
18.
Tran
,
T.-H.
,
Harmand
,
S.
,
Desmet
,
B.
, and
Filangi
,
S.
,
2014
, “
Experimental Investigation on the Feasibility of Heat Pipe Cooling for HEV/EV Lithium-Ion Battery
,”
Appl. Therm. Eng.
,
63
(
2
), pp.
551
558
.
19.
Mondal
,
B.
,
Lopez
,
C. F.
, and
Mukherjee
,
P. P.
,
2014
, “
Exploring the Efficacy of Nanofluids for Lithium-Ion Battery Thermal Management
,”
Int. J. Heat Mass Transfer
,
112
(
September
), pp.
779
794
. .
20.
Jiang
,
Z. Y.
, and
Qu
,
Z. G.
,
2019
, “
Lithium-Ion Battery Thermal Management Using Heat Pipe and Phase Change Material During Discharge–Charge Cycle: A Comprehensive Numerical Study
,”
Appl. Energy
,
242
(
C
), pp.
378
392
.
21.
Zhu
,
C.
,
Li
,
X.
,
Song
,
L.
, and
Xiang
,
L.
,
2013
, “
Development of a Theoretically Based Thermal Model for Lithium Ion Battery Pack
,”
J. Power Sources
,
223
, pp.
155
164
.
22.
Panchal
,
S.
,
Haji Akhoundzadehr
,
M.
,
Raahemifar
,
K.
,
Fowler
,
M.
, and
Fraser
,
R.
,
2019
, “
Heat and Mass Transfer Modeling and Investigation of Multiple LiFePO4/Graphite Batteries in a Pack at Low C-Rates With Water-Cooling
,”
Int. J. Heat Mass Transfer
,
135
, pp.
368
377
.
23.
Yates
,
M.
,
Akrami
,
M.
, and
Javadi
,
A. A.
,
2019
, “
Analysing the Performance of Liquid Cooling Designs in Cylindrical Lithium-Ion Batteries
,”
J. Energy Storage
,
33
, p.
100913
. .
24.
Huang
,
Y.
,
Wang
,
S.
,
Lu
,
Y.
,
Huang
,
R.
, and
Yu
,
X.
,
2020
, “
Study on a Liquid Cooled Battery Thermal Management System Pertaining to the Transient Regime
,”
Appl. Therm. Eng.
,
180
, p.
712
.
25.
Chen
,
K.
,
Chen
,
Y.
,
Song
,
M.
, and
Wang
,
S.
,
2020
, “
Multi-parameter Structure Design of Parallel Mini-Channel Cold Plate for Battery Thermal Management
,”
Int. J. Energy Res.
,
44
(
6
), pp.
4321
4334
.
26.
Huo
,
Y.
,
Rao
,
Z.
,
Liu
,
X.
, and
Zhao
,
J.
,
2015
, “
Investigation of Power Battery Thermal Management by Using Mini-Channel Cold Plate
,”
Energy Convers. Manage.
,
89
(
January
), pp.
387
395
.
27.
Qian
,
Z.
,
Li
,
Y.
, and
Rao
,
Z.
,
2016
, “
Thermal Performance of Lithium-Ion Battery Thermal Management System by Using Mini-Channel Cooling
,”
Energy Convers. Manage.
,
126
, pp.
622
631
.
28.
Jin
,
L. W.
,
Lee
,
P. S.
,
Kong
,
X. X.
,
Fan
,
Y.
, and
Chou
,
S. K.
,
2014
, “
Ultra-Thin Minichannel LCP for EV Battery Thermal Management
,”
Appl. Energy
,
113
, pp.
1786
1794
.
29.
Jianfeng
,
W.
,
Xiaodong
,
L.
,
Fen
,
L.
,
Yiqun
,
L.
,
Fuqiang
,
W.
, and
Na
,
Y.
,
2021
, “
Numerical Optimization of the Cooling Effect of the Bionic Spider-Web Channel Cold Plate on a Pouch Lithium-Ion Battery
,”
Case Studies Therm. Eng.
,
26
, p.
101124
. .
30.
Zhao
,
C.
,
Sousa
,
A. C. M.
, and
Jiang
,
F.
,
2019
, “
Minimization of Thermal Non-Uniformity in Lithium-Ion Battery Pack Cooled by Channeled Liquid Flow
,”
Int. J. Heat Mass Transfer
,
129
, pp.
660
670
.
31.
Deng
,
T.
,
Ran
,
Y.
,
Zhang
,
G.
,
Chen
,
X.
, and
Tong
,
Y.
,
2019
, “
Design Optimization of Bifurcating Mini-Channels Cooling Plate for Rectangular Li-Ion Battery
,”
Int. J. Heat Mass Transfer
,
139
(
C
), pp.
963
973
.
32.
Huang
,
Y.
,
Mei
,
P.
,
Lu
,
Y.
,
Huang
,
R.
,
Yu
,
X.
,
Chen
,
Z.
, and
Roskilly
,
A. P.
,
2019
, “
A Novel Approach for Lithium-Ion Battery Thermal Management With Streamline Shape Mini Channel Cooling Plates
,”
Appl. Therm. Eng.
,
157
, p.
113623
.
33.
Fan
,
C.
,
Jiao
,
W.
, and
Xinglin
,
Y.
,
2022
, “
Topology Optimization Design and Numerical Analysis on Cold Plates for Lithium-Ion Battery Thermal Management
,”
Int. J. Heat Mass Transfer
,
183
(
Part A
), p.
122087
. .
34.
Alexandersen
,
J.
,
Sigmund
,
O.
, and
Aage
,
N.
,
2016
, “
Large Scale Three-Dimensional Topology Optimisation of Heat Sinks Cooled by Natural Convection
,”
Int. J. Heat Mass Transfer
,
100
, pp.
876
891
.
35.
Thomas
,
K. E.
,
Bogatu
,
C.
, and
Newman
,
J.
,
2019
, “
Measurement of the Entropy of Reaction as a Function of State of Charge in Doped and Undoped Lithium Manganese Oxide
,”
J. Electrochem. Soc.
,
148
(
6
), pp.
A570
A575
.
36.
Tian
,
L.
,
Liu
,
B.
,
Min
,
C.
,
Wang
,
J.
, and
He
,
Y.
,
2015
, “
Study on the Effect of Punched Holes on Flow Structure and Heat Transfer of the Plain Fin With Multi-row Delta Winglets
,”
Heat and Mass Transfer
,
51
(
11
), pp.
1523
1536
.
37.
Tian
,
E.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2015
, “
Numerical Simulation of Finned Tube Bank Across a Staggered Circular-Pin-Finned Tube Bundle
,”
Numer. Heat Transfer Part A-Appl.
,
68
(
7
), pp.
737
760
.
38.
Zhang
,
X.-F.
,
Zhao
,
Y.
,
Patel
,
Y.
,
Zhang
,
T.
,
Liu
,
W. M.
,
Chen
,
M.
,
Offer
,
G. J.
, and
Yan
,
Y.
,
2017
, “
Potentiometric Measurement of Entropy Change for Lithium Batteries
,”
Phys. Chem. Chem. Phys.
,
19
(
15
), pp.
9833
9842
.
39.
Hu
,
Y.
,
Choe
,
S.-Y.
, and
Garrick
,
T. R.
,
2020
, “
Hybridized Time-Frequency Method for the Measurement of Entropy Coefficient of Lithium-Ion Battery
,”
Electrochim. Acta
,
362
(
Prepublish
), p.
137124
. .
40.
Ravdel
,
B.
,
Abraham
,
K. M.
,
Gitzendanner
,
R.
,
DiCarlo
,
J.
,
Lucht
,
B.
, and
Campion
,
C.
,
2003
, “
Thermal Stability of Lithium-Ion Battery Electrolytes
,”
J. Power Sources
,
119
(
C
), pp.
805
810
.
You do not currently have access to this content.