Abstract

Nanoscale copper has been successfully integrated into a silicon-based anode via a cost-effective, one-step process. The additive was found to improve the overall electrical conductivity and charge/discharge cycling performance of the anode. Analysis of the new material shows that copper particles are homogeneously interspersed into the silicon active layer. The formation of Cu3Si during the annealing step of the fabrication process was also confirmed using X-ray diffraction and is thought to contribute to the structural stability of the anode during cycling. Despite the inclusion of only small quantities of the additive (approximately 3%), anodes with the added copper show significantly higher initial discharge capacity values (957 mAg−1) compared to anodes without copper (309 mAg−1), and they continue to outperform the latter after 100 charge/discharge cycles. Results also show a significant decrease in the resistance of anodes with the additive, a contributing factor in the improvement of the electrochemical performance.

References

1.
Armand
,
M.
, and
Tarascon
,
J. M.
,
2008
, “
Building Better Batteries
,”
Nature
,
451
(
7179
), pp.
652
657
.
2.
Blomgren
,
G. E.
,
2017
, “
The Development and Future of Lithium Ion Batteries
,”
J. Electrochem. Soc.
,
164
(
1
), pp.
A5019
A5025
.
3.
Suciu
,
G.
, and
Pasat
,
A.
,
2017
, “
Challenges and Opportunities for Batteries of Electric Vehicles
,”
Proceedings of the 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE)
,
Bucharest, Romania
,
Mar. 23–25
, IEEE, pp.
113
117
.
4.
Beattie
,
S. D.
,
Larcher
,
D.
,
Morcrette
,
M.
,
Simon
,
B.
, and
Tarascon
,
J. M.
,
2008
, “
Si Electrodes for Li-Ion Batteries—A New Way to Look at an Old Problem
,”
J. Electrochem. Soc.
,
155
(
2
), pp.
A158
A163
.
5.
Su
,
X.
,
Wu
,
Q. L.
,
Li
,
J. C.
,
Xiao
,
X. C.
,
Lott
,
A.
,
Lu
,
W. Q.
,
Sheldon
,
B. W.
, and
Wu
,
J.
,
2014
, “
Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review
,”
Adv. Energy Mater.
,
4
(
1
), p.
23
.
6.
Beaulieu
,
L. Y.
,
Hatchard
,
T. D.
,
Bonakdarpour
,
A.
,
Fleischauer
,
M. D.
, and
Dahn
,
J. R.
,
2003
, “
Reaction of Li with Alloy Thin Films Studied by in Situ AFM
,”
J. Electrochem. Soc.
,
150
(
11
), pp.
A1457
A1464
.
7.
Baker
,
D. R.
,
Verbrugge
,
M. W.
, and
Bower
,
A. F.
,
2016
, “
Swelling and Elastic Deformation of Lithium-Silicon Electrode Materials
,”
J. Electrochem. Soc.
,
163
(
5
), pp.
A624
A631
.
8.
Zhang
,
C.
,
Wang
,
F.
,
Han
,
J.
,
Bai
,
S.
,
Tan
,
J.
,
Liu
,
J.
, and
Li
,
F.
,
2021
, “
Challenges and Recent Progress on Silicon-Based Anode Materials for Next-Generation Lithium-Ion Batteries
,”
Small Struct.
,
2
(
6
), p.
2100009
.
9.
Tan
,
D. H. S.
,
Chen
,
Y.-T.
,
Yang
,
H.
,
Bao
,
W.
,
Sreenarayanan
,
B.
,
Doux
,
J.-M.
,
Li
,
W.
, et al
,
2021
, “
Carbon-Free High-Loading Silicon Anodes Enabled by Sulfide Solid Electrolytes
,”
Science
,
373
(
6562
), pp.
1494
1499
.
10.
Ng
,
S. H.
,
Wang
,
J. Z.
,
Wexler
,
D.
,
Konstantinov
,
K.
,
Guo
,
Z. P.
, and
Liu
,
H. K.
,
2006
, “
Highly Reversible Lithium Storage in Spheroidal Carbon-Coated Silicon Nanocomposites as Anodes for Lithium-Ion Batteries
,”
Angew. Chem.-Int. Edit.
,
45
(
41
), pp.
6896
6899
.
11.
Yoo
,
J. K.
,
Kim
,
J.
,
Jung
,
Y. S.
, and
Kang
,
K.
,
2012
, “
Scalable Fabrication of Silicon Nanotubes and Their Application to Energy Storage
,”
Adv. Mater.
,
24
(
40
), pp.
5452
5456
.
12.
Zhang
,
R. Y.
,
Du
,
Y. J.
,
Li
,
D.
,
Shen
,
D. K.
,
Yang
,
J. P.
,
Guo
,
Z. P.
,
Liu
,
H. K.
,
Elzatahry
,
A. A.
, and
Zhao
,
D. Y.
,
2014
, “
Highly Reversible and Large Lithium Storage in Mesoporous Si/C Nanocomposite Anodes With Silicon Nanoparticles Embedded in a Carbon Framework
,”
Adv. Mater.
,
26
(
39
), pp.
6749
6755
.
13.
Sourice
,
J.
,
Bordes
,
A.
,
Boulineau
,
A.
,
Alper
,
J. P.
,
Franger
,
S.
,
Quinsac
,
A.
,
Habert
,
A.
, et al
,
2016
, “
Core-Shell Amorphous Silicon-Carbon Nanoparticles for High Performance Anodes in Lithium Ion Batteries
,”
J. Power Sources
,
328
, pp.
527
535
.
14.
Tocoglu
,
U.
,
Cevher
,
O.
,
Cetinkaya
,
T.
,
Guler
,
M. O.
, and
Akbulut
,
H.
,
2014
, “
Cyclic Performance Study of Silicon/Carbon Nanotube Composite Anodes Using Electrochemical Impedance Spectroscopy
,”
Acta Phys. Pol. A
,
125
(
2
), pp.
290
292
.
15.
Wang
,
C. S.
,
Wu
,
G. T.
,
Zhang
,
X. B.
,
Qi
,
Z. F.
, and
Li
,
W. Z.
,
1998
, “
Lithium Insertion in Carbon-Silicon Composite Materials Produced by Mechanical Milling
,”
J. Electrochem. Soc.
,
145
(
8
), pp.
2751
2758
.
16.
Yang
,
X. L.
,
Wen
,
Z. Y.
,
Huang
,
S. H.
,
Zhu
,
X. J.
, and
Zhang
,
X. F.
,
2006
, “
Electrochemical Performances of Silicon Electrode With Silver Additives
,”
Solid State Ion.
,
177
(
26–32
), pp.
2807
2810
.
17.
Zhong
,
L.
,
Beaudette
,
C.
,
Guo
,
J.
,
Bozhilov
,
K.
, and
Mangolini
,
L.
,
2016
, “
Tin Nanoparticles as an Effective Conductive Additive in Silicon Anodes
,”
Sci. Rep.
,
6
(
1
), pp.
1
8
.
18.
Chan
,
C. K.
,
Zhang
,
X. F.
, and
Cui
,
Y.
,
2008
, “
High Capacity Li ion Battery Anodes Using Ge Nanowires
,”
Nano Lett.
,
8
(
1
), pp.
307
309
.
19.
Liang
,
B.
,
Liu
,
Y. P.
, and
Xu
,
Y. H.
,
2014
, “
Silicon-based Materials as High Capacity Anodes for Next Generation Lithium ion Batteries
,”
J. Power Sources
,
267
, pp.
469
490
.
20.
Guan
,
H.
,
Wang
,
X.
,
Chen
,
S. M.
,
Bando
,
Y.
, and
Golberg
,
D.
,
2011
, “
Coaxial Cu-Si@C Array Electrodes for High-Performance Lithium ion Batteries
,”
Chem. Commun.
,
47
(
44
), pp.
12098
12100
.
21.
Wang
,
N.
,
Hang
,
T.
,
Zhang
,
W. J.
, and
Li
,
M.
,
2016
, “
Highly Conductive Cu Nanoneedle-Array Supported Silicon Film for High-Performance Lithium Ion Battery Anodes
,”
J. Electrochem. Soc.
,
163
(
3
), pp.
A380
A384
.
22.
Chen
,
H. X.
,
Xiao
,
Y.
,
Wang
,
L.
, and
Yang
,
Y.
,
2011
, “
Silicon Nanowires Coated With Copper Layer as Anode Materials for Lithium-Ion Batteries
,”
J. Power Sources
,
196
(
16
), pp.
6657
6662
.
23.
Murugesan
,
S.
,
Harris
,
J. T.
,
Korgel
,
B. A.
, and
Stevenson
,
K. J.
,
2012
, “
Copper-Coated Amorphous Silicon Particles as an Anode Material for Lithium-Ion Batteries
,”
Chem. Mater.
,
24
(
7
), pp.
1306
1315
.
24.
Polat
,
B. D.
, and
Keles
,
O.
,
2015
, “
Improving Si Anode Performance by Forming Copper Capped Copper-Silicon Thin Film Anodes for Rechargeable Lithium Ion Batteries
,”
Electrochim. Acta
,
170
, pp.
63
71
.
25.
Kim
,
J. W.
,
Ryu
,
J. H.
,
Lee
,
K. T.
, and
Oh
,
S. M.
,
2005
, “
Improvement of Silicon Powder Negative Electrodes by Copper Electroless Deposition for Lithium Secondary Batteries
,”
J. Power Sources
,
147
(
1–2
), pp.
227
233
.
26.
Cheng
,
Y.
,
Yi
,
Z.
,
Wang
,
C. L.
,
Wang
,
L. D.
,
Wu
,
Y. M.
, and
Wang
,
L. M.
,
2016
, “
Influence of Copper Addition for Silicon-Carbon Composite as Anode Materials for Lithium Ion Batteries
,”
RSC Adv.
,
6
(
8
), pp.
S6756
S6764
.
27.
Fang
,
K.
,
Wang
,
M.
,
Xia
,
Y.
,
Li
,
J.
,
Ji
,
Q.
,
Yin
,
S.
,
Xie
,
S.
, et al
,
2017
, “
Facile Fabrication Of Silicon Nanoparticle Lithium-Ion Battery Anode Reinforced With Copper Nanoparticles
,”
Dig. J. Nanomater. Biostruct.
,
12
(
2
), pp.
243
253
.
28.
Xu
,
K. Q.
,
Zhang
,
Z. Z.
,
Su
,
W.
, and
Huang
,
X. J.
,
2017
, “
Core-Shell Si/Cu Nanocomposites Synthesized by Self-Limiting Surface Reaction as Anodes for Lithium Ion Batteries
,”
Funct. Mater. Lett.
,
10
(
3
), p.
1750025
.
29.
Ling
,
L.
,
Ma
,
Y. T.
,
Xie
,
Q. S.
,
Wang
,
L. S.
,
Zhang
,
Q. F.
, and
Peng
,
D. L.
,
2017
, “
Copper-Nanoparticle-Induced Porous Si/Cu Composite Films as an Anode for Lithium Ion Batteries
,”
ACS Nano
,
11
(
7
), pp.
6893
6903
.
30.
Kim
,
S. O.
, and
Manthiram
,
A.
,
2016
, “
Low-Cost Carbon-Coated Si-Cu3Si-Al2O3 Nanocomposite Anodes for High-Performance Lithium-Ion Batteries
,”
J. Power Sources
,
332
, pp.
222
229
.
31.
Woo
,
J. Y.
,
Kim
,
A. Y.
,
Kim
,
M. K.
,
Lee
,
S. H.
,
Sun
,
Y. K.
,
Liu
,
G. C.
, and
Lee
,
J. K.
,
2017
, “
Cu3Si-Doped Porous-Silicon Particles Prepared by Simplified Chemical Vapor Deposition Method as Anode Material for High-Rate and Long Cycle Lithium-Ion Batteries
,”
J. Alloy. Compd.
,
701
, pp.
425
432
.
32.
Yoon
,
S.
,
Lee
,
S. I.
,
Kim
,
H.
, and
Sohn
,
H. J.
,
2006
, “
Enhancement of Capacity of Carbon-Coated Si-Cu3Si Composite Anode Using Metal-Organic Compound for Lithium-ion Batteries
,”
J. Power Sources
,
161
(
2
), pp.
1319
1323
.
33.
Zhou
,
J. B.
,
Lin
,
N.
,
Han
,
Y.
,
Zhou
,
J.
,
Zhu
,
Y. C.
,
Du
,
J.
, and
Qian
,
Y. T.
,
2015
, “
Cu3Si@Si Core-Shell Nanoparticles Synthesized Using a Solid-State Reaction and Their Performance as Anode Materials for Lithium ion Batteries
,”
Nanoscale
,
7
(
37
), pp.
15075
15079
.
34.
Jeong
,
M.
,
Ahn
,
S.
,
Yokoshima
,
T.
,
Nara
,
H.
,
Momma
,
T.
, and
Osaka
,
T.
,
2016
, “
New Approach for Enhancing Electrical Conductivity of Electrodeposited Si-Based Anode Material for Li Secondary Batteries: Self-Incorporation of Nano Cu Metal in Si-O-C Composite
,”
Nano Energy
,
28
, pp.
51
62
.
35.
Han
,
P.
,
Yuan
,
T.
,
Yao
,
L.
,
Han
,
Z.
,
Yang
,
J. H.
, and
Zheng
,
S. Y.
,
2016
, “
Copper Nanoparticle-Incorporated Carbon Fibers as Free-Standing Anodes for Lithium-Ion Batteries
,”
Nanoscale Res. Lett.
,
11
(
1
).
36.
Gauthier
,
M.
,
Mazouzi
,
D.
,
Reyter
,
D.
,
Lestriez
,
B.
,
Moreau
,
P.
,
Guyomard
,
D.
, and
Roue
,
L.
,
2013
, “
A Low-Cost and High Performance Ball-Milled Si-Based Negative Electrode for High-Energy Li-Ion Batteries
,”
Energy Environ. Sci.
,
6
(
7
), pp.
2145
2155
.
37.
Nadimpalli
,
S. P. V.
,
Sethuraman
,
V. A.
,
Dalavi
,
S.
,
Lucht
,
B.
,
Chon
,
M. J.
,
Shenoy
,
V. B.
, and
Guduru
,
P. R.
,
2012
, “
Quantifying Capacity Loss due to Solid-Electrolyte-Interphase Layer Formation on Silicon Negative Electrodes in Lithium-Ion Batteries
,”
J. Power Sources
,
215
, pp.
145
151
.
38.
Sethuraman
,
V. A.
,
Srinivasan
,
V.
, and
Newman
,
J.
,
2013
, “
Analysis of Electrochemical Lithiation and Delithiation Kinetics in Silicon
,”
J. Electrochem. Soc.
,
160
(
2
), pp.
A394
A403
.
39.
Uchinokura
,
K.
,
Sekine
,
T.
, and
Matsuura
,
E.
,
1972
, “
Raman Scattering By Silicon
,”
Solid State Commun.
,
11
(
1
), pp.
47
49
.
40.
Parker
,
J. H.
,
Feldman
,
D. W.
, and
Ashkin
,
M.
,
1967
, “
Raman Scattering By Silicon And Germanium
,”
Phys. Rev.
,
155
(
3
), pp.
712
714
.
41.
Kim
,
H.
,
Hwang
,
T.
,
Kang
,
K.
,
Pichler-Nagl
,
J.
,
So
,
D. S.
,
Park
,
S.
, and
Huh
,
H.
,
2017
, “
Preparation of Silicon Nanoball Encapsulated With Graphene Shell by CVD and Electroless Plating Process
,”
J. Ind. Eng. Chem.
,
50
, pp.
115
122
.
42.
Wang
,
C.
,
Luo
,
F.
,
Lu
,
H.
,
Rong
,
X. H.
,
Liu
,
B. N.
,
Chu
,
G.
,
Sun
,
Y.
, et al
,
2017
, “
A Well-Defined Silicon Nanocone-Carbon Structure for Demonstrating Exclusive Influences of Carbon Coating on Silicon Anode of Lithium-Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
9
(
3
), pp.
2806
2814
.
43.
Zhong
,
L. L.
,
Guo
,
J. C.
, and
Mangolini
,
L.
,
2015
, “
A Stable Silicon Anode Based on the Uniform Dispersion of Quantum Dots in a Polymer Matrix
,”
J. Power Sources
,
273
, pp.
638
644
.
44.
Kim
,
J. H.
,
Kim
,
H.
, and
Sohn
,
H. J.
,
2005
, “
Addition of Cu for Carbon Coated Si-Based Composites as Anode Materials for Lithium-Ion Batteries
,”
Electrochem. Commun.
,
7
(
5
), pp.
557
561
.
45.
Guo
,
J. C.
,
Sun
,
A.
,
Chen
,
X. L.
,
Wang
,
C. S.
, and
Manivannan
,
A.
,
2011
, “
Cyclability Study of Silicon-Carbon Composite Anodes for Lithium-Ion Batteries Using Electrochemical Impedance Spectroscopy
,”
Electrochim. Acta
,
56
(
11
), pp.
3981
3987
.
46.
Sharma
,
N.
,
Plevert
,
J.
,
Rao
,
G. V. S.
,
Chowdari
,
B. V. R.
, and
White
,
T. J.
,
2005
, “
Tin Oxides With Hollandite Structure as Anodes for Lithium Ion Batteries
,”
Chem. Mater.
,
17
(
18
), pp.
4700
4710
.
47.
Chen
,
J. Z.
,
Yang
,
L.
,
Fang
,
S. H.
,
Hirano
,
S.
, and
Tachibana
,
K.
,
2012
, “
Three-Dimensional Core-Shell Cu@Cu6Sn5 Nanowires as the Anode Material for Lithium Ion Batteries
,”
J. Power Sources
,
199
, pp.
341
345
.
48.
Fan
,
X.
,
Tang
,
X. N.
,
Ma
,
D. Q.
,
Bi
,
P.
,
Jiang
,
A. N.
,
Zhu
,
J.
, and
Xu
,
X. H.
,
2014
, “
Novel Hollow Sn-Cu Composite Nanoparticles Anodes for Li-Ion Batteries Prepared by Galvanic Replacement Reaction
,”
J. Solid State Electrochem.
,
18
(
4
), pp.
1137
1145
.
49.
Kim
,
J. C.
, and
Kim
,
D. W.
,
2014
, “
Electrospun Cu/Sn/C Nanocomposite Fiber Anodes With Superior Usable Lifetime for Lithium- and Sodium-Ion Batteries
,”
Chem.-Asian J.
,
9
(
11
), pp.
3313
3318
.
50.
Lin
,
Y. M.
,
Abel
,
P. R.
,
Gupta
,
A.
,
Goodenough
,
J. B.
,
Heller
,
A.
, and
Mullins
,
C. B.
,
2013
, “
Sn-Cu Nanocomposite Anodes for Rechargeable Sodium-Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
5
(
17
), pp.
8273
8277
.
51.
Liu
,
S.
,
Li
,
Q.
,
Chen
,
Y. X.
, and
Zhang
,
F. J.
,
2009
, “
Carbon-coated Copper-Tin Alloy Anode Material for Lithium Ion Batteries
,”
J. Alloy. Compd.
,
478
(
1–2
), pp.
694
698
.
52.
Ren
,
J. G.
,
He
,
X. M.
,
Wang
,
L.
,
Pu
,
W. H.
,
Jiang
,
C. Y.
, and
Wan
,
C. R.
,
2007
, “
Nanometer Copper-Tin Alloy Anode Material for Lithium-Ion Batteries
,”
Electrochim. Acta
,
52
(
7
), pp.
2447
2452
.
53.
Xue
,
L. G.
,
Fu
,
Z. H.
,
Yao
,
Y.
,
Huang
,
T.
, and
Yu
,
A. S.
,
2010
, “
Three-Dimensional Porous Sn-Cu Alloy Anode for Lithium-Ion Batteries
,”
Electrochim. Acta
,
55
(
24
), pp.
7310
7314
.
54.
Zhao
,
X. Y.
,
Xia
,
Z. H.
, and
Xia
,
D. G.
,
2010
, “
Electrochemical Performance of Sn Film Reinforced by Cu Nanowire
,”
Electrochim. Acta
,
55
(
20
), pp.
6004
6009
.
You do not currently have access to this content.