Abstract

Safety issue concerning “thermal runaway (TR) behavior” of lithium-ion battery (LIB) is one of the core concerns for users. We have studied TR behaviors at various ambient pressures. The thermal runaway onset time (t1) occured in advance at ambient pressure decreasing to 50 kPa from 90 kPa (90, 80, 70, 60, and 50 kPa). At 50 kPa, thermal runaway onset time of LIBs was 177 s earlier than that at 90 kPa. With the decreasing ambient pressure, several values declined, such as battery peak surface temperature, heat release rate (HRR), peak flue gas temperature, and total heat release (THR). Moreover, the peak concentrations of CxHy and CO increased as the ambient pressure decreased, whereas peak concentrations of CO2 and NO showed the opposite trend. Based on the previous studies of the thermal analysis kinetics model of LIBs, a pressure correction factor kp was introduced to establish a prediction model for thermal runaway temperature at low pressure conditions. Based on the model output, the error of thermal runaway onset time t1 could be controlled within ±2 s, and the error of thermal runaway peak temperature Tmax could be controlled within ±2 °C. Our results have been well consistent with the results of simulation, and have been beneficial to further reveal LIBs thermal runaway behavior under low ambient pressure.

References

1.
Nitta
,
N.
,
Wu
,
F.
,
Lee
,
J. T.
, and
Yushin
,
G.
,
2015
, “
Li-Ion Battery Materials: Present and Future
,”
Mater. Today
,
18
(
5
), pp.
252
264
.
2.
Zhang
,
J.
,
Zhang
,
L.
,
Sun
,
F.
, and
Wang
,
Z.
,
2018
, “
An Overview on Thermal Safety Issues of Lithium-Ion Batteries for Electric Vehicle Application
,”
IEEE Access
,
6
(
1
), pp.
23848
23863
.
3.
Liu
,
B.
,
Jia
,
Y.
,
Yuan
,
C.
,
Wang
,
L.
,
Gao
,
X.
,
Yin
,
S.
, and
Xu
,
J.
,
2020
, “
Safety Issues and Mechanisms of Lithium-Ion Battery Cell Upon Mechanical Abusive Loading: A Review
,”
Energy Storage Mater.
,
24
(
1
), pp.
85
112
.
4.
Xu
,
G.
,
Huang
,
L.
,
Lu
,
C.
,
Zhou
,
X.
, and
Cui
,
G.
,
2020
, “
Revealing the Multilevel Thermal Safety of Lithium Batteries
,”
Energy Storage Mater.
,
31
(
6
), pp.
72
86
.
5.
Ping
,
P.
,
Wang
,
Q.
,
Huang
,
P.
,
Li
,
K.
,
Sun
,
J.
,
Kong
,
D.
, and
Chen
,
C.
,
2015
, “
Study of the Fire Behavior of High-Energy Lithium-Ion Batteries With Full-Scale Burning Test
,”
J. Power Sources
,
285
(
7
), pp.
80
89
.
6.
Feng
,
X.
,
Ouyang
,
M.
,
Liu
,
X.
,
Lu
,
L.
,
Xia
,
Y.
, and
He
,
X.
,
2018
, “
Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review
,”
Energy Storage Mater.
,
10
(
12
), pp.
246
267
.
7.
Federal Aviation Administration
,
2021
, https://www.faa.gov/data_research/accident_incident.
8.
Fu
,
Y.
,
Lu
,
S.
,
Shi
,
L.
,
Cheng
,
X.
, and
Zhang
,
H.
,
2018
, “
Ignition and Combustion Characteristics of Lithium Ion Batteries Under Low Atmospheric Pressure
,”
Energy
,
161
(
12
), pp.
38
45
.
9.
Chen
,
M.
,
Ouyang
,
D.
,
Weng
,
J.
,
Liu
,
J.
, and
Wang
,
J.
,
2019
, “
Environmental Pressure Effects on Thermal Runaway and Fire Behaviors of Lithium-Ion Battery With Different Cathodes and State of Charge
,”
Process Saf. Environ. Prot.
,
130
(
10
), pp.
250
256
.
10.
Chen
,
M.
,
Liu
,
J.
,
He
,
Y.
,
Yuen
,
R.
, and
Wang
,
J.
,
2017
, “
Study of the Fire Hazards of Lithium-Ion Batteries at Different Pressures
,”
Appl. Therm. Eng.
,
125
(
10
), pp.
1061
1074
.
11.
Chen
,
X.
,
Sun
,
Q.
,
Wang
,
H.
,
Xie
,
S.
,
Liu
,
Y.
, and
He
,
Y.
,
2019
, “
The Effect of Pressure in Cruise Phase on the Thermal Runaway Behaviors and Smoke Components
,”
2019 9th International Conference on Fire Science and Fire Protection Engineering (ICFSFPE)
,
Chengdu, China
,
Oct. 18–20
, pp.
1
5
.
12.
Chen
,
X.
,
Zhang
,
X.
,
Wang
,
H.
,
Jia
,
J.
,
Xie
,
S.
,
Zhi
,
M.
,
Fu
,
J.
, and
Sun
,
Q.
,
2021
, “
Influence of Ambient Pressure and Heating Power on the Thermal Runaway Features of Lithium-Ion Battery
,”
ASME J. Electrochem. Energy Convers. Storage
,
18
(
2
), p.
021014
.
13.
Xie
,
S.
,
Ren
,
L.
,
Yang
,
X.
,
Wang
,
H.
,
Sun
,
Q.
,
Chen
,
X.
, and
He
,
Y.
,
2020
, “
Influence of Cycling Aging and Ambient Pressure on the Thermal Safety Features of Lithium-Ion Battery
,”
J. Power Sources
,
448
(
2
), p.
227425
.
14.
Wang
,
Q.
,
Ping
,
P.
,
Zhao
,
X.
,
Chu
,
G.
,
Sun
,
J.
, and
Chen
,
C.
,
2012
, “
Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery
,”
J. Power Sources
,
208
(
2
), pp.
210
224
.
15.
Balakrishnan
,
P. G.
,
Ramesh
,
R.
, and
Kumar
,
T. P.
,
2006
, “
Safety Mechanisms in Lithium-Ion Batteries
,”
J. Power Sources
,
155
(
2
), pp.
401
414
.
16.
Kumaresan
,
K.
,
Sikha
,
G.
, and
White
,
R. E.
,
2008
, “
Thermal Model for a Li-Ion Cell—Modeling Graphite Data
,”
J. Electrochem. Soc.
,
155
(
2
), p.
A164
.
17.
Hassan
,
M. I.
,
Kuwana
,
K.
,
Saito
,
K.
, and
Wang
,
F. M.
,
2005
, “
Flow Structure of a Fixed-Frame Type Firewhirl
,”
Fire Saf. Sci.
,
8
(
1
), pp.
951
962
.
18.
Kim
,
G.-H.
,
Pesaran
,
A.
, and
Spotnitz
,
R.
,
2007
, “
A Three-Dimensional Thermal Abuse Model for Lithium-Ion Cells
,”
J. Power Sources
,
170
(
2
), pp.
476
489
.
19.
Hatchard
,
T.
,
MacNeil
,
D.
,
Basu
,
A.
, and
Dahn
,
J.
,
2001
, “
Thermal Model of Cylindrical and Prismatic Lithium-Ion Cells
,”
J. Electrochem. Soc.
,
148
(
7
), pp.
A755
A761
.
20.
Guo
,
G.
,
Long
,
B.
,
Cheng
,
B.
,
Zhou
,
S.
,
Xu
,
P.
, and
Cao
,
B.
,
2010
, “
Three-Dimensional Thermal Finite Element Modeling of Lithium-Ion Battery in Thermal Abuse Application
,”
J. Power Sources
,
195
(
8
), pp.
2393
2398
.
21.
Wang
,
Q.
,
Ping
,
P.
, and
Sun
,
J.
,
2010
, “
Catastrophe Analysis of Cylindrical Lithium Ion Battery
,”
Nonlinear Dyn.
,
61
(
4
), pp.
763
772
.
22.
MacNeil
,
D.
, and
Dahn
,
J.
,
2001
, “
Test of Reaction Kinetics Using Both Differential Scanning and Accelerating Rate Calorimetries as Applied to the Reaction of LixCoO2 in Non-Aqueous Electrolyte
,”
J. Phys. Chem. A
,
105
(
18
), pp.
4430
4439
.
23.
Spotnitz
,
R.
, and
Franklin
,
J.
,
2003
, “
Abuse Behavior of High-Power, Lithium-Ion Cells
,”
J. Power Sources
,
113
(
1
), pp.
81
100
.
24.
Feng
,
X.
,
He
,
X.
,
Ouyang
,
M.
,
Lu
,
L.
,
Wu
,
P.
,
Kulp
,
C.
, and
Prasser
,
S.
,
2015
, “
Thermal Runaway Propagation Model for Designing a Safer Battery Pack With 25 Ah LiNixCoyMnzO2 Large Format Lithium Ion Battery
,”
Appl. Energy
,
154
(
9
), pp.
74
91
.
25.
Feng
,
X.
,
Lu
,
L.
,
Ouyang
,
M.
,
Li
,
J.
, and
He
,
X.
,
2016
, “
A 3D Thermal Runaway Propagation Model for a Large Format Lithium Ion Battery Module
,”
Energy
,
115
(
1
), pp.
194
208
.
26.
Feng
,
X.
,
He
,
X.
,
Ouyang
,
M.
,
Wang
,
L.
,
Lu
,
L.
,
Ren
,
D.
, and
Santhanagopalan
,
S.
,
2018
, “
A Coupled Electrochemical-Thermal Failure Model for Predicting the Thermal Runaway Behavior of Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
165
(
16
), pp.
A3748
A3765
.
27.
Mao
,
B.
,
Zhao
,
C.
,
Chen
,
H.
,
Wang
,
Q.
, and
Sun
,
J.
,
2021
, “
Experimental and Modeling Analysis of Jet Flow and Fire Dynamics of 18650-Type Lithium-Ion Battery
,”
Appl. Energy
,
281
(
12
), p.
116054
.
28.
Wang
,
Y.-W.
, and
Huang
,
C.-Y.
,
2020
, “
Thermal Explosion Energy Evaluated by Thermokinetic Analysis for Series-and Parallel-Circuit NMC Lithium Battery Modules
,”
Process Saf. Environ. Prot.
,
142
(
12
), pp.
295
307
.
29.
Yoshida
,
H.
,
Fukunaga
,
T.
,
Hazama
,
T.
,
Terasaki
,
M.
,
Mizutani
,
M.
, and
Yamachi
,
M.
,
1997
, “
Degradation Mechanism of Alkyl Carbonate Solvents Used in Lithium-Ion Cells During Initial Charging
,”
J. Power Sources
,
68
(
2
), pp.
311
315
.
30.
Yuan
,
L.
,
Dubaniewicz
,
T.
,
Zlochower
,
I.
,
Thomas
,
R.
, and
Rayyan
,
N.
,
2020
, “
Experimental Study on Thermal Runaway and Vented Gases of Lithium-Ion Cells
,”
Process Saf. Environ. Prot.
,
144
(
1
), pp.
186
192
.
31.
Kim
,
H.-S.
,
Kim
,
K.
,
Moon
,
S.-I.
,
Kim
,
I.-J.
, and
Gu
,
H.-B.
,
2008
, “
A Study on Carbon-Coated LiNi1/3Mn1/3Co1/3O2 Cathode Material for Lithium Secondary Batteries
,”
J. Solid State Electrochem.
,
12
(
7
), pp.
867
872
.
32.
Li
,
D.
,
Danilov
,
D. L.
,
Gao
,
L.
,
Yang
,
Y.
, and
Notten
,
P. H.
,
2016
, “
Degradation Mechanisms of C6/LiFePO4 Batteries: Experimental Analyses of Cycling-Induced Aging
,”
Electrochim. Acta
,
210
(
8
), pp.
445
455
.
33.
Ribière
,
P.
,
Grugeon
,
S.
,
Morcrette
,
M.
,
Boyanov
,
S.
,
Laruelle
,
S.
, and
Marlair
,
G.
,
2012
, “
Investigation on the Fire-Induced Hazards of Li-Ion Battery Cells by Fire Calorimetry
,”
Energy Environ. Sci.
,
5
(
1
), pp.
5271
5280
.
34.
An
,
S. J.
,
Li
,
J.
,
Daniel
,
C.
,
Mohanty
,
D.
,
Nagpure
,
S.
, and
Wood
,
D. L.
, III
,
2016
, “
The State of Understanding of the Lithium-Ion-Battery Graphite Solid Electrolyte Interphase (SEI) and Its Relationship to Formation Cycling
,”
Carbon
,
105
(
8
), pp.
52
76
.
35.
Shurtz
,
R. C.
,
Engerer
,
J. D.
, and
Hewson
,
J. C.
,
2018
, “
Predicting High-Temperature Decomposition of Lithiated Graphite: Part II. Passivation Layer Evolution and the Role of Surface Area
,”
J. Electrochem. Soc.
,
165
(
16
), pp.
A3891
A3902
.
36.
Tanaka
,
N.
, and
Bessler
,
W. G.
,
2014
, “
Numerical Investigation of Kinetic Mechanism for Runaway Thermo-Electrochemistry in Lithium-Ion Cells
,”
Solid State Ionics
,
262
(
1
), pp.
70
73
.
37.
Lyon
,
R. E.
, and
Walters
,
R.
,
2016
, “
Energetics of Lithium Ion Battery Failure
,”
J. Hazard. Mater.
,
318
, pp.
164
172
.
38.
Sun
,
J.
,
Li
,
Y.
, and
Hasegawa
,
K.
,
2001
, “
A Study of Self-Accelerating Decomposition Temperature (SADT) Using Reaction Calorimetry
,”
J. Loss Prev. Proc. Ind.
,
14
(
5
), pp.
331
336
.
39.
Wang
,
H.
, and
Tang
,
A.
,
2011
, “
Huang K: Oxygen Evolution in Overcharged LixNi1/3Co1/3Mn1/3O2 Electrode and Its Thermal Analysis Kinetics
,”
Chin. J. Chem.
,
29
(
8
), pp.
1583
1588
.
You do not currently have access to this content.