Abstract

For the problem of the performance gap between individual cells in retired lithium batteries after group use, which affects the usable capacity of the battery pack, a grouping bidirectional equalization method based on variable domain fuzzy control is proposed. Equalization circuits based on a single inductor and LC oscillation circuit are respectively used for inter-cell and inter-cell group, to achieve inter-cell equalization and inter-cell group equalization. Variable domain fuzzy control strategy is used to determine the reasonable range of operating current according to state of health (SOH) of the battery, combined with the relationship between the capacity decay coefficient, and the average operational range of state of charge (SOC); the equalization current is dynamically adjusted according to its mathematical relationship with the operating current. To verify the effectiveness of this equalization method, an experimental platform was built and verification simulations were performed. The result of experiments shows, the equalization speed is increased by 25%, compared to the fixed equalization current control strategy; the capacity decay is reduced by 6% and the service life is extended after experiments of 1200 charge/discharge cycles, compared to traditional fuzzy equalization strategy.

References

1.
Das
,
U. K.
,
Shrivastava
,
P.
, and
Kok
,
S.
,
2020
, “
Advancement of Lithium-Ion Battery Cells Voltage Equalization Techniques: A Review
,”
Renewable Sustainable Energy Rev.
,
134
, p.
110227
.
2.
Fan
,
Z.
,
Carter
,
J.
, and
Cao
,
J.
,
2020
, “
Cell Equalisation Circuits: A Review
,”
J. Power Sources
,
448
(
C
), pp.
227489
227489
.
3.
Lai
,
X.
,
Qiao
,
D.
,
Zheng
,
Y.
,
Ouyang
,
M.
,
Han
,
X.
, and
Zhou
,
L.
,
2019
, “
A Rapid Screening and Regrouping Approach Based on Neural Networks for Large-Scale Retired Lithium-Ion Cells in Second-Use Applications
,”
J. Clean. Prod.
,
213
, pp.
776
791
.
4.
Duan
,
C.
,
Wang
,
C.
,
Li
,
Z.
,
Chen
,
J.
,
Wang
,
S.
,
Snyder
,
A.
, and
Jiang
,
C.
,
2018
, “
A Solar Power-Assisted Battery Balancing System for Electric Vehicles
,”
IEEE Trans. Transport. Electrif.
,
4
(
2
), pp.
432
443
.
5.
Omariba
,
Z. B.
,
Zhang
,
L.
, and
Sun
,
D.
,
2019
, “
Review of Battery Cell Balancing Methodologies for Optimizing Battery Pack Performance in Electric Vehicles
,”
IEEE Access
,
7
, pp.
129335
129352
.
6.
Zun
,
C. Y.
,
Park
,
S. U.
, and
Mok
,
H. S.
,
2020
, “
New Cell Balancing Charging System Research for Lithium-Ion Batteries
,”
Energies
,
13
(
6
), p.
1393
.
7.
Pham
,
V. L.
,
Duong
,
V. T.
, and
Choi
,
W.
, “
A Low Cost and Fast Cell-to-Cell Balancing Circuit for Lithium-Ion Battery Strings
,”
Electronics
,
9
(
2
), p.
248
.
8.
Pham
,
V. L.
,
Duong
,
V. T.
, and
Choi
,
W.
,
2020
, “
High-Efficiency Active Cell-to-Cell Balancing Circuit for Lithium-Ion Battery Modules Using LLC Resonant Converter
,”
J. Power Electron.
,
20
(
4
), pp.
1
10
.
9.
Yongqi
,
L.
,
Man
,
C.
,
Ke
,
W. U.
, and
Zhibin
,
L.
,
2019
, “
Research on Four Levels Balancing Control for Cascaded H-Bridge Based Battery Energy Storage System
,”
Acta Energ. Sol. Sin.
,
40
(
5
), pp.
1291
1297
.
10.
Zhang
,
J.
,
Wang
,
N.
,
Huang
,
R.
,
Ma
,
M.
, and
He
,
S.
,
2019
, “
Survey on Frequency Regulation Technology of Power Grid by High-Penetration Photovoltaic
,”
Power Syst. Protect. Control
,
47
(
15
), pp.
179
186
.
11.
Yan
,
X. W.
,
Deng
,
H. R.
,
Guo
,
Q.
, and
Qi
,
W.
,
2019
, “
Study on the State of Health Detection of Power Batteries Based on Adaptive Unscented Kalman Filters and the Battery Echelon Utilization
,”
Trans. China Electrotech. Soc.
,
34
(
18
), pp.
3937
3948
.
12.
Xiong
,
R.
,
Li
,
L. L.
, and
Tian
,
J. P.
,
2018
, “
Towards a Smarter Battery Management System: A Critical Review on Battery State of Health Monitoring Methods
,”
J. Power Sources
,
405
, pp.
18
29
.
13.
Shang
,
Y.
,
Cui
,
N.
, and
Zhang
,
C.
,
2019
, “
An Optimized Any-Cell-to-Any-Cell Equalizer Based on Coupled Half-Bridge Converters for Series-Connected Battery Strings
,”
IEEE Trans. Power Electron
,
34
(
9
), pp.
8831
8841
.
14.
Xin
,
C.
,
Qingchang
,
Z.
,
Yanchen
,
Q.
, and
Deng
,
Z.-Q.
,
2018
, “
Multilayer Modular Balancing Strategy for Individual Cells in a Battery Pack
,”
IEEE Trans. Energy Conv.
,
33
(
2
), pp.
526
536
.
15.
Meng
,
J.
,
Ricco
,
M.
,
Luo
,
G.
,
Swierczynski
,
M.
,
Stroe
,
D.-I.
,
Stroe
,
A.-I.
, and
Teodorescu
,
R.
,
2018
, “
An Overview and Comparison of Online Implementable SOC Estimation Methods for Lithium-Ion Battery
,”
IEEE Trans. Ind. Appl.
,
54
(
2
), pp.
1583
1591
.
16.
Liu
,
J.
,
Xu
,
M.
,
Zeng
,
J.
,
Wu
,
J.
, and
Kai Wai Eric
,
C.
,
2018
, “
Modified Voltage Equaliser Based on Cockcroft–Walton Voltage Multipliers for Series-Connected Supercapacitors
,”
IET Electr. Syst. Transport.
8
(
1
), pp.
44
51
.
17.
Hannan
,
M. A.
,
Hoque
,
M. M.
,
Peng
,
S. E.
, and
Uddin
,
M. N.
,
2017
, “
Lithium-Ion Battery Charge Equalization Algorithm for Electric Vehicle Applications
,”
IEEE Trans. Ind. Appl.
,
53
(
3
), pp.
2541
2549
.
18.
Uno
,
M.
, and
Kukita
,
A.
,
2018
, “
String-to-Battery Voltage Equalizer Based on a Half-Bridge Converter With Multistacked Current Doublers for Series-Connected Batteries
,”
IEEE Trans. Power Electron.
,
34
(
2
), pp.
1286
1298
.
19.
Bouchhima
,
N.
,
Gossen
,
M.
,
Schulte
,
S.
, and
Birke
,
K. P.
,
2018
, “
Lifetime of Self-Reconfigurable Batteries Compared With Conventional Batteries
,”
J. Energy Storage
,
15
, pp.
400
407
.
20.
Tang
,
X.
,
Zou
,
C.
,
Wik
,
T.
,
Yao
,
K.
,
Xia
,
Y.
,
Wang
,
Y.
,
Yang
,
D.
, and
Gao
,
F.
,
2020
, “
Run-to-Run Control for Active Balancing of Lithium Iron Phosphate Battery Packs
,”
IEEE Trans. Power Electron.
,
35
(
2
), pp.
1499
1512
.
21.
Daowd
,
M.
,
Antoine
,
M.
,
Omar
,
N.
,
van den Bossche
,
P.
, and
van Mierlo
,
J.
,
2013
, “
Single Switched Capacitor Battery Balancing System Enhancements
,”
Energies
,
6
(
4
), pp.
2149
2174
.
22.
Park
,
S. H.
,
Park
,
K. B.
,
Kim
,
H. S.
,
Moon
,
G.-W.
, and
Youn
,
M.-J.
,
2012
, “
Single-Magnetic Cell-to-Cell Charge Equalization Converter With Reduced Number of Transformer Windings
,”
IEEE Trans. Power Electron.
,
27
(
6
), pp.
2900
2911
.
23.
Phung
,
T. H.
,
Collet
,
A.
, and
Crebier
,
J.-C.
,
2014
, “
An Optimized Topology for Next-to-Next Balancing of Series-Connected Lithium-Ion Cells
,”
Power Electron.
,
29
(
9
), pp.
4603
4613
.
24.
Lee
,
K. M.
,
Chung
,
Y. C.
,
Sung
,
C. H.
, and
Kang
,
B.
, “
Active Cell Balancing of Li-Ion Batteries Using LC Series Resonant Circuit
,”
IEEE Trans. Ind. Electron.
,
62
(
9
), pp.
5491
5501
.
25.
Weiji
,
H.
,
Changfu
,
Z.
,
Chen
,
Z.
, and
Zhang
,
L.
,
2019
, “
Estimation of Cell SOC Evolution and System Performance in Module-Based Battery Charge Equalization Systems
,”
IEEE Trans. Smart Grid
,
10
(
5
), pp.
4717
4728
.
26.
Kim
,
D.
, and
Lee
,
J.
,
2017
, “
Discharge Scheduling for Voltage Balancing in Reconfigurable Battery Systems
,”
Electron. Lett.
,
53
(
7
), pp.
496
498
.
27.
Wangbin
,
Z.
,
Jun
,
H.
, and
Haitao
,
C.
,
2018
, “
An Active Balance Circuit Applied to Lithium Ion Battery Packs
,”
Spacecraft Eng.
,
27
(
4
), pp.
61
66
.
28.
He
,
L.
,
Yang
,
Z.
,
Gu
,
Y.
,
Liu
,
C.
,
He
,
T.
, and
Shin
,
K. G.
,
2018
, “
SoH-Aware Reconfiguration in Battery Packs
,”
IEEE Trans. Smart Grid
,
9
(
4
), pp.
3727
3735
.
29.
Chatzinikolaou
,
E.
, and
Rogers
,
J. D.
,
2018
, “
Hierarchical Distributed Balancing Control for Large-Scale Reconfigurable AC Battery Packs
,”
IEEE Trans. Power Electron.
,
33
(
7
), pp.
5592
5602
.
30.
Zhiguo
,
A. N.
,
Zhikun
,
S.
,
Dongsheng
,
Z.
, and
Jingyi
,
G.
,
2019
, “
SOC Estimation of Lithium Battery Based on Equivalent Model of Extended Kalman Filter
,”
J. Chongqing Jiaotong Univ.
,
38
(
2
), pp.
133
138
.
You do not currently have access to this content.