Abstract

Overdischarge is one of the main factors of lithium-ion battery failure, due to the inconsistency of lithium-ion battery in pack. However, the failure mechanism remains unclear. This article introduces the X-ray computed tomography (CT) to explore the gas production and copper dissolution of lithium battery during overdischarge state. From tomographic images in two different cross-sectional directions, the internal structure changes of bulge deformation and copper deposition are observed to quantitatively analyze the relationship between copper deposition and overdischarge state of charge. The position distribution is analyzed by density distribution feature, which indicate that the gas production is mainly distributed in the middle of the battery, and the copper deposition is distributed around the outer side. The experimental result shows that X-ray CT is a nondestructive, quantitative, visual, and effective way to study the internal structure and material distribution of the overdischarge battery, so as to effectively monitor the state of the lithium-ion battery, to avoid dangerous problems such as internal short circuits and thermal runaway.

References

1.
Liu
,
Z.
, and
He
,
H.
,
2017
, “
Sensor Fault Detection and Isolation for a Lithium-Ion Battery Pack in Electric Vehicles Using Adaptive Extended Kalman Filter
,”
Appl. Energy
,
185
, pp.
2033
2044
.
2.
Feng
,
X.
,
Ouyang
,
M.
,
Liu
,
X.
,
Lu
,
L.
,
Xia
,
Y.
, and
He
,
X.
,
2018
, “
Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review
,”
Energy Storage Mater
,
10
, pp.
246
267
.
3.
Lai
,
X.
,
Zheng
,
Y.
,
Zhou
,
L.
, and
Gao
,
W.
,
2018
, “
Electrical Behavior of Overdischarge-Induced Internal Short Circuit in Lithium-Ion Cells
,”
Electrochim Acta
,
278
, pp.
245
254
.
4.
Wang
,
Q. S.
,
Mao
,
B. B.
,
Stoliarov
,
S.
, and
Sun
,
J. H.
,
2019
, “
A Review of Lithium Ion Battery Failure Mechanisms and Fire Prevention Strategies
,”
Prog. Energy Combust. Sci.
,
73
, pp.
95
131
.
5.
Guo
,
R.
,
Lu
,
L. G.
,
Ouyang
,
M. G.
, and
Feng
,
X. N.
,
2016
, “
Mechanism of the Entire Overdischarge Process and Overdischarge-Induced Internal Short Circuit in Lithium-Ion Batteries
,”
Sci. Rep.
,
6
(
7
), p.
30248
.
6.
Wu
,
C.
,
Zhu
,
C. B.
,
Sun
,
J. L.
, and
Jiang
,
J. H.
,
2017
, “
Fault Mechanism Study on Li-Ion Battery at Over-Discharge and Its Diagnosis Approach
,”
IET Electr. Syst. Transp.
,
7
(
1
), pp.
48
54
.
7.
Conner
,
F.
,
Daniel
,
J. R.
,
Judith
,
A. J.
, and
Partha
,
P. M.
,
2018
, “
Elucidating Copper Dissolution Phenomenon in Li-Ion Cells Under Overdischarge Extremes
,”
J. Electrochem. Soc.
,
165
, pp.
1
10
.
8.
Daniel
,
J. R.
,
Anjul
,
A. V.
,
Conner
,
F.
,
Judith
,
A. J.
, and
Partha
,
P. M.
,
2020
, “
Overdischarge and Aging Analytics of Li-Ion Cells
,”
J. Electrochem. Soc.
,
167
, pp.
1
16
.
9.
Fuentevilla
,
D.
,
Hendricks
,
C.
, and
Mansour
,
A.
,
2015
, “
Quantifying the Impact of Overdischarge on Large Format Lithium-Ion Cells
,”
ECS Trans.
,
69
(
20
), pp.
1
4
.
10.
Zhang
,
L. L.
,
Liu
,
J. L.
,
Du
,
L.
,
Xu
,
X.
,
Ma
,
Y. L.
,
Qu
,
B.
,
Fan
,
P.
,
Yin
,
G. P.
,
Yang
,
F.
, and
Zhu
,
L.
,
2021
, “
Identifying the Aging Mechanism in Multiple Overdischarged LiCoO2 Mesocarbon Microbeads Batteries
,”
Ceram. Int.
,
47
(
15
), pp.
21253
21262
.
11.
Gelb
,
J.
,
Finegan
,
D. P.
,
Brett Dan
,
J. L.
, and
Shearing
,
P. R.
,
2017
, “
Multi-scale 3D Investigations of a Commercial 18650 Li-Ion Battery With Correlative Electron- and X-Ray Microscopy
,”
J. Power Sources
,
357
, pp.
77
86
.
12.
Gonzalez
,
J.
,
Sun
,
K.
,
Huang
,
M.
,
Lambros
,
J.
,
Dillon
,
S.
, and
Chasiotis
,
I.
,
2014
, “
Three Dimensional Studies of Particle Failure in Silicon Based Composite Electrodes for Lithium Ion Batteries
,”
J. Power Sources
,
269
, pp.
334
343
.
13.
Eastwood
,
D. S.
,
Bradley
,
R. S.
,
Tariq
,
F.
,
Cooper
,
S. J.
,
Taiwo
,
O. O.
,
Gelb
,
J.
,
Merkle
,
A.
, et al
,
2014
, “
The Application of Phase Contrast X-ray Techniques for Imaging Li-Ion Battery Electrodes
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
,
324
, pp.
118
123
.
14.
Jiao
,
L. A.
,
Li
,
X.
,
Ren
,
L. L.
,
Kong
,
L. Y.
,
Hong
,
Y. L.
,
Li
,
Z. W.
,
Huang
,
X. B.
, and
Tao
,
X. F.
,
2015
, “
3D Structural Properties Study on Compact LiFePO4s Based on X-Ray Computed Tomography Technique
,”
Powder Technol.
,
281
, pp.
1
6
.
15.
Taiwo
,
O. O.
,
Loveridge
,
M.
,
Beattie
,
S. D.
,
Finegan
,
D. P.
,
Bhagat
,
R.
,
Brett
,
D. J. L.
, and
Shearing
,
P. R.
,
2017
, “
Investigation of Cycling-Induced Microstructural Degradation in Silicon-Based Electrodes in Lithium-Ion Batteries Using X-Ray Nanotomography
,”
Electrochim. Acta
,
253
, pp.
85
92
.
16.
Tariq
,
F.
,
Yufit
,
V.
,
Kishimoto
,
M.
,
Shearing
,
P. R.
,
Menkin
,
S.
,
Golodnitsky
,
D.
,
Gelb
,
J.
,
Peled
,
E.
, and
Brandon
,
N. P.
,
2014
, “
Three-Dimensional High Resolution X-Ray Imaging and Quantification of Lithium Ion Battery Mesocarbon Microbead Anodes
,”
J. Power Sources
,
248
, pp.
1014
1020
.
17.
Paz-Garcia
,
J. M.
,
Taiwo
,
O. O.
,
Tudisco
,
E.
,
Finegan
,
D. P.
,
Shearing
,
P. R.
,
Brett
,
D. J. L.
, and
Hall
,
S. A.
,
2016
, “
4D Analysis of the Microstructural Evolution of Si-Based Electrodes During Lithiation: Time-Lapse X-Ray Imaging and Digital Volume Correlation
,”
J. Power Sources
,
320
, pp.
196
203
.
18.
Chen-Wiegart
,
Y. K.
,
Liu
,
Z.
,
Faber
,
K. T.
,
Barnett
,
S. A.
, and
Wang
,
J.
,
2013
, “
3D Analysis of a LiCoO2–Li (Ni1/3Mn1/3Co1/3) O2 Li-Ion Battery Positive Electrode Using x-Ray Nano-Tomography
,”
Electrochem. Commun.
,
28
, pp.
127
130
.
19.
Heenan
,
T. M. M.
,
Finegan
,
D. P.
,
Tjaden
,
B.
,
Lu
,
X.
,
Iacoviello
,
F.
,
Millichamp
,
J.
,
Brett
,
D. J. L.
, and
Shearing
,
P. R.
,
2018
, “
4D Nano-Tomography of Electrochemical Energy Devices Using Lab-Based X-Ray Imaging
,”
Nano Energy
,
47
, pp.
556
565
.
20.
Shearing
,
P. R.
,
Howard
,
L. E.
,
Jørgensen
,
P. S.
,
Brandon
,
N. P.
, and
Harris
,
S. J.
,
2010
, “
Characterization of the 3-Dimensional Microstructure of a Graphite Negative Electrode From a Li-Ion Battery
,”
Electrochem. Commun.
,
12
(
3
), pp.
374
377
.
21.
Finegan
,
D. P.
,
Cooper
,
S. J.
,
Tjaden
,
B.
,
Taiwo
,
O. O.
,
Gelb
,
J.
,
Hinds
,
G.
,
Brett
,
D. J. L.
, and
Shearing
,
P. R.
,
2016
, “
Characterising the Structural Properties of Polymer Separators for Lithium-Ion Batteries in 3D Using Phase Contrast X-Ray Microscopy
,”
J. Power Sources
,
333
, pp.
184
192
.
22.
Finegan
,
D. P.
,
Scheel
,
M.
,
Robinson
,
J. B.
,
Tjaden
,
B.
,
Hunt
,
I.
,
Mason
,
T. J.
,
Millichamp
,
J.
, et al
,
2015
, “
In-Operando High-Speed Tomography of Lithium-Ion Batteries During Thermal Runaway
,”
Nat. commun.
,
6
(
1
), pp.
1
10
.
23.
Yufit
,
V.
,
Shearing
,
P.
,
Hamilton
,
R. W.
,
Lee
,
P. D.
,
Wu
,
M.
, and
Brandon
,
N. P.
,
2011
, “
Investigation of Lithium-Ion Polymer Battery Cell Failure Using X-Ray Computed Tomography
,”
Electrochem. Commun.
,
13
(
6
), pp.
608
610
.
24.
Finegan
,
D. P.
,
Darst
,
J.
,
Walker
,
W.
,
Li
,
Q.
,
Yang
,
C.
,
Jervis
,
R.
,
Heenan
,
T. M. M.
, et al
,
2019
, “
Modelling and Experiments to Identify High-Risk Failure Scenarios for Testing the Safety of Lithium-Ion Cells
,”
J. Power Sources
,
417
, pp.
29
41
.
25.
Rachel
,
C.
,
Brett
,
H.
,
Corey
,
T. L.
, and
Iryna
,
V. Z.
,
2018
, “
-Ray Computed Tomography Comparison of Individual and Parallel Assembled Commercial Lithium Iron Phosphate Batteries at end of Life After High Rate Cycling
,”
J. Power Sources
,
381
, pp.
46
55
.
26.
Zhang
,
X. F.
,
Li
,
L. F.
, and
Xu
,
W.
,
2021
, “
Analysis of Gas Production in Overcharged Lithium Battery by X-Ray Computed Tomography
,”
J. Electrochem. En. Conv. Stor.
,
18
(
2
), pp.
1
7
.
27.
Maleki
,
H.
, and
Howard
,
J. N.
,
2006
, “
Effects of Overdischarge on Performance and Thermal Stability of a Li-Ion Cell
,”
J. Power Sources
,
160
(
2
), pp.
1395
1402
.
You do not currently have access to this content.