Abstract

Lead-acid batteries have the advantages of wide temperature adaptability, large discharge power, and high safety factor. It is still widely used in electrochemical energy storage systems. In order to ensure the application of batteries under extreme working conditions, it is necessary to explore the degradation mechanism. In this study, the experimental battery is the same type of 2 V-500 Ah lead-acid battery produced by different manufacturers. First, the three batteries were subjected to the same high temperature and high current cycle thermal shock test (50 °C, 0.2 C current) combined with quantitative analysis of plate active material and microscopic morphology observation. In addition, numerical studies are used to simulate the distribution of electrical parameters on the positive plate and grid. The above three parts are combined to study the causes of accelerated battery decay under high temperature and high current conditions. The results showed that the extreme conditions aggravated the non-uniformity of the potential distribution of the positive plate and the grid, which increased by 10.62% and 51.59%, respectively. The battery with higher remaining capacity has more α-PbO2 in the active material, and has a considerable amount of β-PbO2. The battery with the smallest remaining capacity has the largest volume of active material. The volume of the material affects the electrochemical reaction surface area. The larger the volume of the material, the higher the resistance of that part, which will lead to an increase in the overall impedance of the battery.

References

1.
Huck
,
M.
, and
Sauer
,
D.-U.
,
2020
, “
Modeling Transient Processes in Lead-Acid Batteries in the Time Domain
,”
J. Energy Storage
,
29
, p.
101430
.
2.
Mohsin
,
M.
,
Picot
,
A.
, and
Maussion
,
P.
,
2022
, “
A New Lead-Acid Battery State-of-Health Evaluation Method Using Electrochemical Impedance Spectroscopy for Second Life in Rural Electrification Systems
,”
J. Energy Storage
,
52
, p.
104647
.
3.
Li
,
J.
,
Xue
,
Y.
,
Tian
,
L.
, and
Yuan
,
X.
,
2017
, “
Research on Optimal Configuration Strategy of Energy Storage Capacity in Grid-Connected Microgrid
,”
Prot. Control Mod. Power Syst.
,
2
(
1
), p.
35
.
4.
Lopes
,
P. P.
, and
Stamenkovic
,
V. R.
,
2020
, “
Past, Present, and Future of Lead-Acid Batteries
,”
Science
,
369
(
6506
), pp.
923
924
.
5.
Esparcia
,
E. A.
,
Castro
,
M. T.
,
Odulio
,
C. M. F.
, and
Ocon
,
J. D.
,
2022
, “
A Stochastic Techno-Economic Comparison of Generation-Integrated Long Duration Flywheel, Lithium-Ion Battery, and Lead-Acid Battery Energy Storage Technologies for Isolated Microgrid Applications
,”
J. Energy Storage
,
52
, p.
104681
.
6.
Lyu
,
N.
,
Jin
,
Y.
,
Xiong
,
R.
,
Miao
,
S.
, and
Gao
,
J.
,
2022
, “
Real-Time Overcharge Warning and Early Thermal Runaway Prediction of Li-Ion Battery by Online Impedance Measurement
,”
IEEE Trans. Ind. Electron.
,
69
(
2
), pp.
1929
1936
.
7.
Jin
,
Y.
,
Zhao
,
Z.
,
Miao
,
S.
,
Wang
,
Q.
,
Sun
,
L.
, and
Lu
,
H.
,
2021
, “
Explosion Hazards Study of Grid-Scale Lithium-Ion Battery Energy Storage Station
,”
J. Energy Storage
,
42
, p.
102987
.
8.
Jin
,
Y.
,
Zheng
,
Z.
,
Wei
,
D.
,
Jiang
,
X.
,
Lu
,
H.
,
Sun
,
L.
,
Tao
,
F.
, et al
,
2020
, “
Detection of Micro-Scale Li Dendrite Via H2 Gas Capture for Early Safety Warning
,”
Joule
,
4
(
8
), pp.
1714
1729
.
9.
Su
,
T.
,
Lyu
,
N.
,
Zhao
,
Z.
,
Wang
,
H.
, and
Jin
,
Y.
,
2021
, “
Safety Warning of Lithium-Ion Battery Energy Storage Station Via Venting Acoustic Signal Detection for Grid Application
,”
J. Energy Storage
,
38
, p.
102498
.
10.
Rajamand
,
S.
,
2022
, “
Analysis of Effect of Physical Parameters on the Performance of Lead Acid Battery as Efficient Storage Unit in Power Systems Using New Finite-Element-Method-Based Model
,”
J. Energy Storage
,
47
, p.
103620
.
11.
Romero
,
A. F.
,
Urra
,
O.
,
Blecua
,
M.
,
Ocón
,
P.
,
Valenciano
,
J.
, and
Trinidad
,
F.
,
2021
, “
Effect on Water Consumption by Metallic Impurities Into Electrolyte of Lead-Acid Batteries
,”
J. Energy Storage
,
42
, p.
103025
.
12.
Zhong
,
J.
,
Gu
,
J.
,
Zhu
,
K.
,
Wang
,
X.
, and
Wang
,
S.
,
2022
, “
Quasi-Solid Synthesis of Nano-Pb/C Composites for Enhanced Performance of Lead-Acid Battery
,”
J. Energy Storage
,
47
, p.
103535
.
13.
Yang
,
J.
,
Zhang
,
C.
,
Zhang
,
H.
,
Li
,
F.
,
Yang
,
F.
,
Ji
,
S.
, and
Lei
,
L.
,
2020
, “
Fabrication of PbSO4 Negative Electrode of Lead-Acid Battery With High Performance
,”
J. Solid State Electrochem.
,
24
(
10
), pp.
2555
2560
.
14.
Tsujikawa
,
T.
, and
Matsushima
,
T.
,
2007
, “
Remote Monitoring of VRLA Batteries for Telecommunications Systems
,”
J. Power Sources
,
168
(
1
), pp.
99
104
.
15.
Yang
,
H.
,
Chen
,
S.
,
Gong
,
L.
,
Zaman
,
S.
,
Qi
,
K.
,
Guo
,
X.
,
Qiu
,
Y.
, and
Xia
,
B. Y.
,
2020
, “
Online Electrochemical Behavior Analysis on the Negative Plate of Lead-Acid Batteries During the High-Rate Partial-State-of-Charge Cycle
,”
Electrochim. Acta
,
354
, p.
136776
.
16.
Liu
,
H.
,
Wang
,
Z.
,
Cheng
,
J.
, and
Maly
,
D.
,
2009
, “
Improvement on the Cold Cranking Capacity of Commercial Vehicle by Using Supercapacitor and Lead-Acid Battery Hybrid
,”
IEEE Trans. Veh. Technol.
,
58
(
3
), pp.
1097
1105
.
17.
Greenleaf
,
M.
,
Dalchand
,
O.
,
Li
,
H.
, and
Zheng
,
J. P.
,
2015
, “
A Temperature-Dependent Study of Sealed Lead-Acid Batteries Using Physical Equivalent Circuit Modeling With Impedance Spectra Derived High Current/Power Correction
,”
IEEE Trans. Sustain. Energy
,
6
(
2
), pp.
380
387
.
18.
Olarte
,
J.
,
Martínez de Ilarduya
,
J.
,
Zulueta
,
E.
,
Ferret
,
R.
,
Kurt
,
E.
, and
Lopez-Guede
,
J. M.
,
2021
, “
High Temperature VLRA Lead Acid Battery SOH Characterization Based on the Evolution of Open Circuit Voltage at Different States of Charge
,”
JOM
,
73
(
5
), pp.
1251
1260
.
19.
Hirai
,
N.
, and
Yamamoto
,
Y.
,
2015
, “
Effect of Various Alkaline Metal Ions on Electrochemical Behavior of Lead Electrode in Sulfuric Acid Solution
,”
J. Power Sources
,
293
, pp.
1073
1076
.
20.
Valenciano
,
J.
,
Fernández
,
M.
,
Trinidad
,
F.
, and
Sanz
,
L.
,
2009
, “
Lead-Acid Batteries for Micro- and Mild-Hybrid Applications
,”
J. Power Sources
,
187
(
2
), pp.
599
604
.
21.
Soria
,
M. L.
,
Trinidad
,
F.
,
Lacadena
,
J. M.
,
Sánchez
,
A.
, and
Valenciano
,
J.
,
2007
, “
Advanced Valve-Regulated Lead-Acid Batteries for Hybrid Vehicle Applications
,”
J. Power Sources
,
168
(
1
), pp.
12
21
.
22.
Soria
,
M. L.
,
Hernández
,
J. C.
,
Valenciano
,
J.
,
Sánchez
,
A.
, and
Trinidad
,
F.
,
2005
, “
New Developments on Valve-Regulated Lead–Acid Batteries for Advanced Automotive Electrical Systems
,”
J. Power Sources
,
144
(
2
), pp.
473
485
.
23.
Kuhn
,
A. T.
, and
Stevenson
,
J. M.
,
1983
, “
Factors Affecting the Formation of Lead/Acid Tubular Positives II. Resting and Extreme Conditions
,”
J. Power Sources
,
10
(
4
), pp.
389
397
.
24.
Vignarooban
,
K.
,
Chu
,
X.
,
Chimatapu
,
K.
,
Ganeshram
,
P.
,
Pollat
,
S.
,
Johnson
,
N. G.
,
Razdan
,
A.
,
Pelley
,
D. S.
, and
Kannan
,
A. M.
,
2016
, “
State of Health Determination of Sealed Lead Acid Batteries Under Various Operating Conditions
,”
Sustainable Energy Technol. Assess.
,
18
, pp.
134
139
.
25.
Albers
,
J.
,
2009
, “
Heat Tolerance of Automotive Lead-Acid Batteries
,”
J. Power Sources
,
190
(
1
), pp.
162
172
.
26.
Kamenev
,
Y.
,
Shtompel
,
G.
,
Ostapenko
,
E.
, and
Leonov
,
V.
,
2014
, “
Influence of the Active Mass Particle Suspension in Electrolyte Upon Corrosion of Negative Electrode of a Lead-Acid Battery
,”
J. Power Sources
,
257
, pp.
181
185
.
27.
Inguanta
,
R.
,
Vergottini
,
F.
,
Ferrara
,
G.
,
Piazza
,
S.
, and
Sunseri
,
C.
,
2010
, “
Effect of Temperature on the Growth of Alpha-PbO2 Nanostructures
,”
Electrochim. Acta
,
55
(
28
), pp.
8556
8562
.
28.
Liu
,
Z.
,
Luo
,
X.
, and
Ji
,
D.
,
2021
, “
Effect of Phase Composition of PbO2 on Cycle Stability of Soluble Lead Flow Batteries
,”
J. Energy Storage
,
38
, p.
102524
.
29.
Taguchi
,
M.
,
Sasaki
,
T.
, and
Takahashi
,
H.
,
2014
, “
Discharge-Charge Property of Lead-Acid Battery Using Nano-Scale PbO2 as Cathode Active Material
,”
Mater. Trans.
,
55
(
2
), pp.
327
333
.
30.
Shen
,
J.
,
Hu
,
Y.
,
Li
,
C.
,
Qin
,
C.
, and
Ye
,
M.
,
2009
, “
Synthesis of Amphiphilic Graphene Nanoplatelets
,”
Small
,
5
(
1
), pp.
82
85
.
31.
Ball
,
R. J.
,
Kurian
,
R.
,
Evans
,
R.
, and
Stevens
,
R.
,
2002
, “
Failure Mechanisms in Valve Regulated Lead/Acid Batteries for Cyclic Applications
,”
J. Power Sources
,
109
(
1
), pp.
189
202
.
32.
Gandhi
,
K. S.
,
Shukla
,
A. K.
,
Martha
,
S. K.
, and
Gaffoor
,
S. A.
,
2009
, “
Simplified Mathematical Model for Effects of Freezing on the Low-Temperature Performance of the Lead-Acid Battery
,”
J. Electrochem. Soc.
,
156
(
3
), p.
A238
.
33.
Valenciano
,
J.
,
Sánchez
,
A.
,
Trinidad
,
F.
, and
Hollenkamp
,
A. F.
,
2006
, “
Graphite and Fiberglass Additives for Improving High-Rate Partial-State-of-Charge Cycle Life of Valve-Regulated Lead-Acid Batteries
,”
J. Power Sources
,
158
(
2
), pp.
851
863
.
34.
Hernández
,
J. C.
,
Soria
,
M. L.
,
González
,
M.
,
García-Quismondo
,
E.
,
Muñoz
,
A.
, and
Trinidad
,
F.
,
2006
, “
Studies on Electrolyte Formulations to Improve Life of Lead Acid Batteries Working Under Partial State of Charge Conditions
,”
J. Power Sources
,
162
(
2
), pp.
851
863
.
35.
Fernández
,
M.
,
Trinidad
,
F.
,
Valenciano
,
J.
, and
Sánchez
,
A.
,
2006
, “
Optimization of the Cycle Life Performance of VRLA Batteries, Working Under High Rate, Partial State of Charge (HRPSOC) Conditions
,”
J. Power Sources
,
158
(
2
), pp.
1149
1165
.
36.
Insinga
,
M. G.
,
Pisana
,
S.
,
Oliveri
,
R. L.
,
Sunseri
,
C.
, and
Inguanta
,
R.
,
2018
, “
Performance of Lead-Acid Batteries With Nanostructured Electrodes at Different Temperature
,”
2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI)
,
Palermo, Italy
,
Sept. 10–13
, pp.
1
4
.
37.
Oliveri
,
R. L.
,
Insinga
,
M. G.
,
Tamburrino
,
D.
,
Ganci
,
F.
,
Patella
,
B.
,
Aiello
,
G.
,
Livreri
,
P.
, and
Inguanta
,
R.
,
2021
, “
High-Rate Cycling Performance of Lead-Acid Batteries With Nanostructured Electrodes
,”
2021 AEIT International Conference on Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE)
,
Torino, Italy
,
Nov. 17–19
, pp.
1
6
.
38.
Moncada
,
A.
,
Inguanta
,
R.
,
Piazza
,
S.
, and
Sunseri
,
C.
,
2015
, “
Performance of Nanostructured Electrode in Lead Acid Battery
,”
Chem. Eng. Trans.
,
43
, pp.
751
756
.
39.
Moncada
,
A.
,
Mistretta
,
M. C.
,
Randazzo
,
S.
,
Piazza
,
S.
,
Sunseri
,
C.
, and
Inguanta
,
R.
,
2014
, “
High-Performance of PbO2 Nanowire Electrodes for Lead-Acid Battery
,”
J. Power Sources
,
256
, pp.
72
79
.
40.
Inguanta
,
R.
,
Randazzo
,
S.
,
Moncada
,
A.
,
Mistretta
,
M. C.
,
Piazza
,
S.
, and
Sunseri
,
C.
,
2013
, “
Growth and Electrochemical Performance of Lead and Lead Oxide Nanowire Arrays as Electrodes for Lead-Acid Batteries
,”
Chem. Eng. Trans.
,
32
, pp.
2227
2232
.
41.
Blecua
,
M.
,
Romero
,
A. F.
,
Ocon
,
P.
,
Fatas
,
E.
,
Valenciano
,
J.
, and
Trinidad
,
F.
,
2019
, “
Improvement of the Lead Acid Battery Performance by the Addition of Graphitized Carbon Nanofibers Together With a Mix of Organic Expanders in the Negative Active Material
,”
J. Energy Storage
,
23
, pp.
106
115
.
42.
Blecua
,
M.
,
Fatas
,
E.
,
Ocon
,
P.
,
Gonzalo
,
B.
,
Merino
,
C.
,
de la Fuente
,
F.
,
Valenciano
,
J.
, and
Trinidad
,
F.
,
2017
, “
Graphitized Carbon Nanofibers: New Additive for the Negative Active Material of Lead Acid Batteries
,”
Electrochim. Acta
,
257
, pp.
109
117
.
43.
Arun
,
S.
,
Kiran
,
K. U. V.
,
Kumar
,
S. M.
,
Karnan
,
M.
,
Sathish
,
M.
, and
Mayavan
,
S.
,
2021
, “
Effect of Orange Peel Derived Activated Carbon as a Negative Additive for Lead-Acid Battery Under High Rate Discharge Condition
,”
J. Energy Storage
,
34
, p.
102225
.
44.
Guo
,
Y.
,
Li
,
Y.
,
Zhang
,
G.
,
Zhang
,
H.
, and
Garche
,
J.
,
2003
, “
Studies of Current and Potential Distributions on Lead-Acid Batteries
,”
J. Power Sources
,
124
(
1
), pp.
271
277
.
45.
Nakhaie
,
D.
,
Benhangi
,
P. H.
,
Alfantazi
,
A.
, and
Davoodi
,
A.
,
2014
, “
The Effect of Grid Configurations on Potential and Current Density Distributions in Positive Plate of Lead–Acid Battery Via Numerical Modeling
,”
Electrochim. Acta
,
115
, pp.
189
196
.
46.
Huang
,
T.
,
Ou
,
W.
,
Feng
,
B.
,
Huang
,
B.
,
Liu
,
M.
,
Zhao
,
W.
, and
Guo
,
Y.
,
2012
, “
Researches on Current Distribution and Plate Conductivity of Valve-Regulated Lead-Acid Batteries
,”
J. Power Sources
,
210
, pp.
7
14
.
47.
Streza
,
M.
,
Nuţ
,
C.
,
Tudoran
,
C.
,
Bunea
,
V.
,
Calborean
,
A.
, and
Morari
,
C.
,
2016
, “
Distribution of Current in the Electrodes of Lead-Acid Batteries: A Thermographic Analysis Approach
,”
J. Phys. D: Appl. Phys.
,
49
(
5
), p.
055503
.
You do not currently have access to this content.