Abstract

In order to improve the accuracy of battery pack inconsistency fault detection, an optimal deep belief network (DBN) single battery inconsistency fault detection model based on the gray wolf algorithm (GWA) was proposed. The performance of the DBN model is affected by the weights and bias parameters, and the gray wolf algorithm has a good ability to seek optimization, so the gray wolf algorithm is used to optimize the connection weights of the DBN model. Therefore, the accuracy rate of battery inconsistency diagnosis is improved. The battery voltage characteristic data is used as the input signal of the DBN model. The health and faults of the single cells are used as the output signals of the DBN model. The battery inconsistency fault detection model of GWA-DBN is established. Through the comparison and simulation with other algorithms, it is proved that the designed model has higher diagnostic accuracy, better fitting effect, and good application prospect.

References

1.
Hashemi
,
S. R.
,
Esmaeeli
,
R.
,
Nazari
,
A.
,
Aliniagerdroudbari
,
H.
,
Alhadri
,
M.
,
Zakri
,
W.
,
Mohammed
,
A. H.
,
Mahajan
,
A.
, and
Farhad
,
S.
,
2019
, “
A Fast Diagnosis Methodology for Typical Faults of a Lithium-Ion Battery in Electric and Hybrid Electric Aircraft
,”
ASME J. Electrochem. Energy Convers. Storage
,
17
(
1
), p.
011011
.
2.
Kang
,
W.
,
Xiao
,
J.
,
Xiao
,
M.
,
Tang
,
X.
, and
Hu
,
B.
,
2020
, “
Research on Fault Diagnosis Technology Based on FD-GT Method
,”
Int. J. Inf. Commun. Technol.
,
16
(
3
), p.
261
.
3.
Quanqing
,
Y.
,
Lei
,
D.
,
Rui
,
X.
,
Zeyu
,
C.
,
Xin
,
Z.
, and
Weixiang
,
S.
,
2022
, “
Current Sensor Fault Diagnosis Method Based on an Improved Equivalent Circuit Battery Model
,”
Appl. Energy
,
310
(
3
), p.
118588
.
4.
Jiang
,
L.
,
Deng
,
Z.
,
Tang
,
X.
,
Hu
,
L.
,
Lin
,
X.
, and
Hu
,
X.
,
2021
, “
Data-Driven Fault Diagnosis and Thermal Runaway Warning for Battery Packs Using Real-World Vehicle Data
,”
Energy
,
234
, pp.
121266
121276
.
5.
Yuedong
,
Z.
,
Yang
,
S.
,
Wei
,
Z.
, and
Hongling
,
L.
,
2002
, “
High-Frequency Networked UPS Fault Diagnosis Expert System Design
,”
Power Electron. Technol.
, (
3
), pp.
66
68
.
6.
Jian
,
F.
, and
Guoguang
,
Q.
,
2002
, “
Application of Expert Detection System in Rechargeable Batteries
,”
Power Technol.
, (
3
), pp.
161
164
.
7.
Fengwen
,
P.
,
Dongliang
,
B.
,
Ying
,
G.
,
Mingwei
,
X.
, and
Bin
,
M.
,
2021
, “
Current Sensor Fault Detection Based on Linearized Model of Lithium-Ion Battery
,”
J. Jilin Univ. (Eng. Ed.)
,
51
(
2
), pp.
435
441
.
8.
Zhengyu
,
L.
,
Liyang
,
Y.
,
Chengcheng
,
Z.
, and
Dengwei
,
X.
,
2020
, “
Battery Fault Detection Method Based on Amplitude Squared Coherence Spectrum
,”
Chin. J. Electr. Eng.
,
40
(
9
), pp.
3052
3059
.
9.
Xingdi
,
W.
,
2018
, “
Model-Based Fault Detection for Proton Exchange Membrane Fuel Cell Systems
,”
Int. J. Eng. Sci. Technol
.
10.
Deng
,
F.
,
Bian
,
Y.
, and
Zheng
,
H.
,
2022
, “
Fault Diagnosis for Electric Vehicle Lithium Batteries Using a Multi-classification Support Vector Machine
,”
Electr. Eng.
,
104
(
1
), pp.
1831
1837
.
11.
Hu
,
B.
,
Tang
,
J.
,
Wu
,
J.
, and
Liu
,
J.
,
2021
, “
Rolling Bearing Fault Diagnosis Method Based on Improved Deep Belief Network
,”
J. Phys. Conf. Ser.
,
1820
(
1
), p.
012105
.
12.
Li
,
X.
,
Dai
,
K.
,
Wang
,
Z.
, and
Han
,
W.
,
2020
, “
Lithium-Ion Batteries Fault Diagnostic for Electric Vehicles Using Sample Entropy Analysis Method
,”
J. Energy Storage
,
27
(
C
), p.
101121
.
13.
Li
,
H. P.
,
Qi
,
Z.
,
Hu
,
J. P.
, and
Zhang
,
X. Y.
,
2021
, “
Research on the Method of Rotary Machinery Fault Diagnosis Based on PCA and DBN
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
1043
(
2
), p.
022044
.
14.
Xiaohong
,
Q.
, and
Zhiwei
,
Y.
,
2021
, “
Fault Diagnosis of Analog Circuits Based on Wavelet Packet Energy Entropy and DBN
,”
IOP Conf. Ser. Earth Environ. Sci.
,
632
(
4
).
15.
Greggio
,
N.
,
2018
, “
Anomaly Detection in IDSs by Means of Unsupervised Greedy Learning of Finite Mixture Models
,”
Soft Comput.
,
22
(
10
), pp.
3357
3372
.
16.
Wang
,
H.
,
Huang
,
H.
,
Yu
,
S.
, and
Gu
,
W.
,
2021
, “
Size and Location Diagnosis of Rolling Bearing Faults: An Approach of Kernel Principal Component Analysis and Deep Belief Network
,”
Int. J. Comput. Intell. Syst.
,
14
(
1
), p.
1672
.
17.
Wuhan University
,
2020
, “
Patent Issued for Deep Belief Network Feature Extraction-Based Analogue Circuit Fault Diagnosis Method
,”
J. Eng.
18.
Xia
,
L.
,
Lv
,
J.
,
Xie
,
C.
, and
Yin
,
J.
,
2021
, “
A Conditional Classification Recurrent RBM for Improved Series Mid-Term Forecasting
,”
Appl. Intell.
,
51
(
11
), pp.
8334
8348
.
19.
Chiluveru
,
S. R.
,
Gyanendra, Chunarkar
,
S.
,
Tripathy
,
M.
, and
Kaushik
,
B. K.
,
2021
, “
Efficient Hardware Implementation of DNN-Based Speech Enhancement Algorithm With Precise Sigmoid Activation Function
,”
IEEE Trans. Circuits Syst. Express Briefs
,
68
(
11
), pp.
3461
3465
.
20.
Wang
,
H.
, and
Shiwang
,
H.
,
2021
, “
Model of the Influence of Internet Finance on Monetary Policy Based on Gibbs Sampling and Vector Autoregression
,”
J. Intell. Fuzzy Syst.
,
40
(
4
), pp.
6505
6515
.
21.
Fu
,
Z.
,
Zhang
,
X.
, and
Tao
,
J.
,
2020
, “
Gibbs Sampling Using the Data Augmentation Scheme for Higher-Order Item Response Models
,”
Physica A
,
541
(
1
), p.
123696
.
22.
Das
,
A.
, and
Debnath
,
N.
,
2021
, “
Gibbs Sampling for Damage Detection Using Complex Modal Data From Multiple Setups
,”
ASCE-ASME J. Risk Uncertain. Eng. Sys. A: Civil Eng.
,
7
(
2
), pp.
04021018-1
04021018-16
.
23.
Gulec
,
O.
,
Haytaoglu
,
E.
, and
Tokat
,
S.
,
2020
, “
A Novel Distributed CDS Algorithm for Extending Lifetime of WSNs With Solar Energy Harvester Nodes for Smart Agriculture Applications
,”
IEEE Access
,
8
, pp.
58859
58873
.
24.
Zhang
,
L.
,
Gao
,
T.
,
Cai
,
G.
, and
Hai
,
K. L.
,
2022
, “
Research on Electric Vehicle Charging Safety Warning Model Based on Back Propagation Neural Network Optimized by Improved Gray Wolf Algorithm
,”
J. Energy Storage
,
49
, p.
104092
.
You do not currently have access to this content.