Abstract

Dispersion drying is an essential step in an enormous number of research and industry fields, including self-assembly, membrane fabrication, printing, battery electrode fabrication, painting, and large-scale solar cell fabrication. The drying process of dispersion directly influences the structure and properties of the resulting dried film. Thus, it is important to investigate the underlying physics of dispersion drying and the effects of different drying parameters. This article reviews modeling studies of coating drying processes, along with corresponding experimental observations. We have divided drying processes into two conceptual stages. In the first drying stage, liquid evaporation, particle sedimentation, and Brownian motion compete and affect the particle distribution during drying and thus in the final film structure. We have included a comprehensive discussion of the influences of drying parameters, such as evaporation rate, particle sizes, and temperature, on the above competition and the resulting film structure. A drying regime map describing where different drying phenomena dominate was formulated based on the literature. We also extended our discussion to the practical applications of battery slurry drying an essential step in conventional battery electrode manufacturing. In the second drying stage, the physics of porous drying and crack formation are reviewed. This review aims to provide a comprehensive understanding of dispersion drying mechanisms and to provide guidance in the design of film products with favorable structures and properties for targeted practical applications.

References

1.
Léang
,
M.
,
Giorgiutti-Dauphiné
,
F.
,
Lee
,
L.-T.
, and
Pauchard
,
L.
,
2017
, “
Crack Opening: From Colloidal Systems to Paintings
,”
Soft Matter
,
13
(
34
), pp.
5802
5808
.
2.
Lim
,
S.
,
Ahn
,
K. H.
, and
Yamamura
,
M.
,
2013
, “
Latex Migration in Battery Slurries During Drying
,”
Langmuir
,
29
(
26
), pp.
8233
8244
.
3.
Li
,
Z.
,
Klein
,
T. R.
,
Kim
,
D. H.
,
Yang
,
M.
,
Berry
,
J. J.
,
van Hest
,
M. F. A. M.
, and
Zhu
,
K.
,
2018
, “
Scalable Fabrication of Perovskite Solar Cells
,”
Nat. Rev. Mater.
,
3
(
4
), pp.
1
20
.
4.
Deng
,
Y.
,
Peng
,
E.
,
Shao
,
Y.
,
Xiao
,
Z.
,
Dong
,
Q.
, and
Huang
,
J.
,
2015
, “
Scalable Fabrication of Efficient Organolead Trihalide Perovskite Solar Cells With Doctor-Bladed Active Layers
,”
Energy Environ. Sci.
,
8
(
5
), pp.
1544
1550
.
5.
Routh
,
A. F.
,
2013
, “
Drying of Thin Colloidal Films
,”
Rep. Prog. Phys.
,
76
(
4
), p.
046603
.
6.
Dalmaz
,
N.
,
Ozbelge
,
H. O.
,
Eraslan
,
A. N.
, and
Uludag
,
Y.
,
2007
, “
Heat and Mass Transfer Mechanisms in Drying of a Suspension Droplet: A New Computational Model
,”
Dry. Technol.
,
25
(
2
), pp.
391
400
.
7.
Zang
,
D.
,
Tarafdar
,
S.
,
Tarasevich
,
Y. Y.
,
Dutta Choudhury
,
M.
, and
Dutta
,
T.
,
2019
, “
Evaporation of a Droplet: From Physics to Applications
,”
Phys. Rep.
,
804
, pp.
1
56
.
8.
Mampallil
,
D.
, and
Eral
,
H. B.
,
2018
, “
A Review on Suppression and Utilization of the Coffee-Ring Effect
,”
Adv. Colloid Interface Sci.
,
252
, pp.
38
54
.
9.
Schulz
,
M.
, and
Keddie
,
J. L.
,
2018
, “
A Critical and Quantitative Review of the Stratification of Particles During the Drying of Colloidal Films
,”
Soft Matter
,
14
(
30
), pp.
6181
6197
.
10.
Bolintineanu
,
D. S.
,
Grest
,
G. S.
,
Lechman
,
J. B.
,
Pierce
,
F.
,
Plimpton
,
S. J.
, and
Schunk
,
P. R.
,
2014
, “
Particle Dynamics Modeling Methods for Colloid Suspensions
,”
Comput. Part. Mech.
,
1
(
3
), pp.
321
356
.
11.
Reyes
,
Y.
,
Campos-Terán
,
J.
,
Vázquez
,
F.
, and
Duda
,
Y.
,
2007
, “
Properties of Films Obtained From Aqueous Polymer Dispersions: Study of Drying Rate and Particle Polydispersity Effects
,”
Model. Simul. Mater. Sci. Eng.
,
15
(
3
), pp.
355
368
.
12.
Cheng
,
S.
, and
Grest
,
G. S.
,
2016
, “
Dispersing Nanoparticles in a Polymer Film via Solvent Evaporation
,”
ACS Macro Lett.
,
5
(
6
), pp.
694
698
.
13.
Howard
,
M. P.
,
Nikoubashman
,
A.
, and
Panagiotopoulos
,
A. Z.
,
2017
, “
Stratification in Drying Polymer–Polymer and Colloid–Polymer Mixtures
,”
Langmuir
,
33
(
42
), pp.
11390
11398
.
14.
Liu
,
Z.
, and
Mukherjee
,
P. P.
,
2014
, “
Microstructure Evolution in Lithium-Ion Battery Electrode Processing
,”
J. Electrochem. Soc.
,
161
(
8
), pp.
E3248
E3258
.
15.
Cetinbas
,
F. C.
,
Ahluwalia
,
R. K.
,
Kariuki
,
N.
,
De Andrade
,
V.
,
Fongalland
,
D.
,
Smith
,
L.
,
Sharman
,
J.
,
Ferreira
,
P.
,
Rasouli
,
S.
, and
Myers
,
D. J.
,
2017
, “
Hybrid Approach Combining Multiple Characterization Techniques and Simulations for Microstructural Analysis of Proton Exchange Membrane Fuel Cell Electrodes
,”
J. Power Sources
,
344
, pp.
62
73
.
16.
Baunach
,
M.
,
Jaiser
,
S.
,
Schmelzle
,
S.
,
Nirschl
,
H.
,
Scharfer
,
P.
, and
Schabel
,
W.
,
2016
, “
Delamination Behavior of Lithium-Ion Battery Anodes: Influence of Drying Temperature During Electrode Processing
,”
Dry. Technol.
,
34
(
4
), pp.
462
473
.
17.
Kumano
,
N.
,
Kudo
,
K.
,
Suda
,
A.
,
Akimoto
,
Y.
,
Ishii
,
M.
, and
Nakamura
,
H.
,
2019
, “
Controlling Cracking Formation in Fuel Cell Catalyst Layers
,”
J. Power Sources
,
419
, pp.
219
228
.
18.
Kameya
,
Y.
,
2017
, “
Kinetic Monte Carlo Simulation of Nanoparticle Film Formation via Nanocolloid Drying
,”
J. Nanoparticle Res.
,
19
(
6
), p.
214
.
19.
Rabani
,
E.
,
Reichman
,
D. R.
,
Geissler
,
P. L.
, and
Brus
,
L. E.
,
2003
, “
Drying-Mediated Self-Assembly of Nanoparticles
,”
Nature
,
426
(
6964
), pp.
271
274
.
20.
Lebovka
,
N. I.
,
Tarasevich
,
Y. Y.
, and
Vygornitskii
,
N. V.
,
2018
, “
Vertical Drying of a Suspension of Sticks: Monte Carlo Simulation for Continuous Two-Dimensional Problem
,”
Phys. Rev. E
,
97
(
2
), p.
022136
.
21.
Lebovka
,
N. I.
,
Vygornitskii
,
N. V.
,
Gigiberiya
,
V. A.
, and
Tarasevich
,
Y. Yu.
,
2016
, “
Monte Carlo Simulation of Evaporation-Driven Self-Assembly in Suspensions of Colloidal Rods
,”
Phys. Rev. E
,
94
(
6
), p.
062803
.
22.
Reyes
,
Y.
, and
Duda
,
Y.
,
2005
, “
Modeling of Drying in Films of Colloidal Particles
,”
Langmuir
,
21
(
15
), pp.
7057
7060
.
23.
Howard
,
M. P.
,
Reinhart
,
W. F.
,
Sanyal
,
T.
,
Shell
,
M. S.
,
Nikoubashman
,
A.
, and
Panagiotopoulos
,
A. Z.
,
2018
, “
Evaporation-Induced Assembly of Colloidal Crystals
,”
J. Chem. Phys.
,
149
(
9
), p.
094901
.
24.
Cheng
,
S.
, and
Grest
,
G. S.
,
2013
, “
Molecular Dynamics Simulations of Evaporation-Induced Nanoparticle Assembly
,”
J. Chem. Phys.
,
138
(
6
), p.
064701
.
25.
Tang
,
Y.
,
Grest
,
G. S.
, and
Cheng
,
S.
,
2019
, “
Stratification of Drying Particle Suspensions: Comparison of Implicit and Explicit Solvent Simulations
,”
J. Chem. Phys.
,
150
(
22
), p.
224901
.
26.
Tang
,
Y.
,
Grest
,
G. S.
, and
Cheng
,
S.
,
2018
, “
Stratification in Drying Films Containing Bidisperse Mixtures of Nanoparticles
,”
Langmuir
,
34
(
24
), pp.
7161
7170
.
27.
Howard
,
M. P.
,
Nikoubashman
,
A.
, and
Panagiotopoulos
,
A. Z.
,
2017
, “
Stratification Dynamics in Drying Colloidal Mixtures
,”
Langmuir
,
33
(
15
), pp.
3685
3693
.
28.
Tang
,
Y.
,
Grest
,
G. S.
, and
Cheng
,
S.
,
2019
, “
Control of Stratification in Drying Particle Suspensions via Temperature Gradients
,”
Langmuir
,
35
(
12
), pp.
4296
4304
.
29.
Statt
,
A.
,
Howard
,
M. P.
, and
Panagiotopoulos
,
A. Z.
,
2018
, “
Influence of Hydrodynamic Interactions on Stratification in Drying Mixtures
,”
J. Chem. Phys.
,
149
(
2
), p.
024902
.
30.
Makepeace
,
D. K.
,
Fortini
,
A.
,
Markov
,
A.
,
Locatelli
,
P.
,
Lindsay
,
C.
,
Moorhouse
,
S.
,
Lind
,
R.
,
Sear
,
R. P.
, and
Keddie
,
J. L.
,
2017
, “
Stratification in Binary Colloidal Polymer Films: Experiment and Simulations
,”
Soft Matter
,
13
(
39
), pp.
6969
6980
.
31.
Fortini
,
A.
, and
Sear
,
R. P.
,
2017
, “
Stratification and Size Segregation of Ternary and Polydisperse Colloidal Suspensions During Drying
,”
Langmuir
,
33
(
19
), pp.
4796
4805
.
32.
Martín-Fabiani
,
I.
,
Fortini
,
A.
,
Lesage de la Haye
,
J.
,
Koh
,
M. L.
,
Taylor
,
S. E.
,
Bourgeat-Lami
,
E.
,
Lansalot
,
M.
,
D’Agosto
,
F.
,
Sear
,
R. P.
, and
Keddie
,
J. L.
,
2016
, “
PH-Switchable Stratification of Colloidal Coatings: Surfaces ‘On Demand
,”
ACS Appl. Mater. Interfaces
,
8
(
50
), pp.
34755
34761
.
33.
Cusola
,
O.
,
Kivistö
,
S.
,
Vierros
,
S.
,
Batys
,
P.
,
Ago
,
M.
,
Tardy
,
B. L.
,
Greca
,
L. G.
,
Roncero
,
M. B.
,
Sammalkorpi
,
M.
, and
Rojas
,
O. J.
,
2018
, “
Particulate Coatings via Evaporation-Induced Self-Assembly of Polydisperse Colloidal Lignin on Solid Interfaces
,”
Langmuir
,
34
(
20
), pp.
5759
5771
.
34.
Utgenannt
,
A.
,
Maspero
,
R.
,
Fortini
,
A.
,
Turner
,
R.
,
Florescu
,
M.
,
Jeynes
,
C.
,
Kanaras
,
A. G.
,
Muskens
,
O. L.
,
Sear
,
R. P.
, and
Keddie
,
J. L.
,
2016
, “
Fast Assembly of Gold Nanoparticles in Large-Area 2D Nanogrids Using a One-Step, Near-Infrared Radiation-Assisted Evaporation Process
,”
ACS Nano
,
10
(
2
), pp.
2232
2242
.
35.
Tatsumi
,
R.
,
Iwao
,
T.
,
Koike
,
O.
,
Yamaguchi
,
Y.
, and
Tsuji
,
Y.
,
2018
, “
Effects of the Evaporation Rate on the Segregation in Drying Bimodal Colloidal Suspensions
,”
Appl. Phys. Lett.
,
112
(
5
), p.
053702
.
36.
Fortini
,
A.
,
Martín-Fabiani
,
I.
,
De La Haye
,
J. L.
,
Dugas
,
P.-Y.
,
Lansalot
,
M.
,
D’Agosto
,
F.
,
Bourgeat-Lami
,
E.
,
Keddie
,
J. L.
, and
Sear
,
R. P.
,
2016
, “
Dynamic Stratification in Drying Films of Colloidal Mixtures
,”
Phys. Rev. Lett.
,
116
(
11
), p.
118301
.
37.
Wang
,
M.
, and
Brady
,
J. F.
,
2017
, “
Microstructures and Mechanics in the Colloidal Film Drying Process
,”
Soft Matter
,
13
(
44
), pp.
8156
8170
.
38.
Liao
,
Q.
,
Chen
,
L.
,
Qu
,
X.
, and
Jin
,
X.
,
2000
, “
Brownian Dynamics Simulation of Film Formation of Mixed Polymer Latex in the Water Evaporation Stage
,”
J. Colloid Interface Sci.
,
227
(
1
), pp.
84
94
.
39.
Sand
,
A.
,
Toivakka
,
M.
, and
Hjelt
,
T.
,
2009
, “
Influence of Colloidal Interactions on Pigment Coating Layer Structure Formation
,”
J. Colloid Interface Sci.
,
332
(
2
), pp.
394
401
.
40.
Liu
,
Z.
,
Battaglia
,
V.
, and
Mukherjee
,
P. P.
,
2014
, “
Mesoscale Elucidation of the Influence of Mixing Sequence in Electrode Processing
,”
Langmuir
,
30
(
50
), pp.
15102
15113
.
41.
Forouzan
,
M. M.
,
Chao
,
C.-W.
,
Bustamante
,
D.
,
Mazzeo
,
B. A.
, and
Wheeler
,
D. R.
,
2016
, “
Experiment and Simulation of the Fabrication Process of Lithium-Ion Battery Cathodes for Determining Microstructure and Mechanical Properties
,”
J. Power Sources
,
312
, pp.
172
183
.
42.
Nikpour
,
M.
,
Barrett
,
N.
,
Hillman
,
Z.
,
Thompson
,
A. I.
,
Mazzeo
,
B. A.
, and
Wheeler
,
D. R.
,
2021
, “
A Model for Investigating Sources of Li-Ion Battery Electrode Heterogeneity: Part I. Electrode Drying and Calendering Processes
,”
J. Electrochem. Soc.
,
168
(
6
), p.
060547
.
43.
Routh
,
A. F.
, and
Zimmerman
,
W. B.
,
2004
, “
Distribution of Particles During Solvent Evaporation From Films
,”
Chem. Eng. Sci.
,
59
(
14
), pp.
2961
2968
.
44.
Cardinal
,
C. M.
,
Jung
,
Y. D.
,
Ahn
,
K. H.
, and
Francis
,
L. F.
,
2010
, “
Drying Regime Maps for Particulate Coatings
,”
AIChE J.
,
56
(
11
), pp.
2769
2780
.
45.
Holl
,
Y.
,
Keddie
,
J. L.
,
McDonald
,
P. J.
, and
Winnik
,
W. A.
,
2001
, “Drying Modes of Polymer Colloids,”
Film Formation in Coatings
, Vol.
790
,
American Chemical Society
,
Washington, DC
, pp.
2
26
.
46.
Style
,
R. W.
, and
Peppin
,
S. S. L.
,
2011
, “
Crust Formation in Drying Colloidal Suspensions
,”
Proc. Math. Phys. Eng. Sci.
,
467
(
2125
), pp.
174
193
.
47.
Roy
,
S.
, and
Tirumkudulu
,
M. S.
,
2015
, “
Drying and Consolidation in Drying Colloidal Dispersions
,”
Procedia IUTAM
,
15
, pp.
57
63
.
48.
Sharma
,
J.
,
Tewari
,
K.
, and
Arya
,
R. K.
,
2017
, “
Diffusion in Polymeric Systems–A Review on Free Volume Theory
,”
Prog. Org. Coat.
,
111
, pp.
83
92
.
49.
Arya
,
R. K.
,
2014
, “
Measurement of Concentration Profiles in Thin Film Binary Polymer-Solvent Coatings Using Confocal Raman Spectroscopy: Free Volume Model Validation
,”
Dry. Technol.
,
32
(
8
), pp.
992
1002
.
50.
Gromer
,
A.
,
Nassar
,
M.
,
Thalmann
,
F.
,
Hébraud
,
P.
, and
Holl
,
Y.
,
2015
, “
Simulation of Latex Film Formation Using a Cell Model in Real Space: Vertical Drying
,”
Langmuir
,
31
(
40
), pp.
10983
10994
.
51.
Routh
,
A. F.
, and
Russel
,
W. B.
,
2001
, “
Deformation Mechanisms During Latex Film Formation: Experimental Evidence
,”
Ind. Eng. Chem. Res.
,
40
(
20
), pp.
4302
4308
.
52.
Avcõ
,
A.
,
Can
,
M.
, and
Etemog
,
A. B.
,
2001
, “
A Theoretical Approach to the Drying Process of Thin Film Layers
,”
Appl. Therm. Eng.
,
21
(
4
), pp.
465
479
.
53.
Turkan
,
B.
,
Etemoglu
,
A. B.
, and
Can
,
M.
,
2019
, “
An Investigation Into Evaporative Ink Drying Process on Forced Convective Heat and Mass Transfer Under Impinging Air Jets
,”
Heat Mass Transf.
,
55
(
5
), pp.
1359
1369
.
54.
Price
,
P. E.
, and
Cairncross
,
R. A.
,
2000
, “
Optimization of Single-Zone Drying of Polymer Solution Coatings Using Mathematical Modeling
,”
J. Appl. Polym. Sci.
,
78
(
1
), pp.
149
165
.
55.
Trueman
,
R. E.
,
Lago Domingues
,
E.
,
Emmett
,
S. N.
,
Murray
,
M. W.
, and
Routh
,
A. F.
,
2012
, “
Auto-Stratification in Drying Colloidal Dispersions: A Diffusive Model
,”
J. Colloid Interface Sci.
,
377
(
1
), pp.
207
212
.
56.
Atmuri
,
A. K.
,
Bhatia
,
S. R.
, and
Routh
,
A. F.
,
2012
, “
Autostratification in Drying Colloidal Dispersions: Effect of Particle Interactions
,”
Langmuir
,
28
(
5
), pp.
2652
2658
.
57.
Zhou
,
J.
,
Jiang
,
Y.
, and
Doi
,
M.
,
2017
, “
Cross Interaction Drives Stratification in Drying Film of Binary Colloidal Mixtures
,”
Phys. Rev. Lett.
,
118
(
10
), p.
108002
.
58.
Sear
,
R. P.
, and
Warren
,
P. B.
,
2017
, “
Diffusiophoresis in Nonadsorbing Polymer Solutions: The Asakura-Oosawa Model and Stratification in Drying Films
,”
Phys. Rev. E
,
96
(
6
), p.
062602
.
59.
Sear
,
R. P.
,
2018
, “
Stratification of Mixtures in Evaporating Liquid Films Occurs Only for a Range of Volume Fractions of the Smaller Component
,”
J. Chem. Phys.
,
148
(
13
), p.
134909
.
60.
Sui
,
J.
,
2019
, “
Stratification in the Dynamics of Sedimenting Colloidal Platelet–Sphere Mixtures
,”
Soft Matter
,
15
(
23
), pp.
4714
4722
.
61.
Nikiforow
,
I.
,
Adams
,
J.
,
König
,
A. M.
,
Langhoff
,
A.
,
Pohl
,
K.
,
Turshatov
,
A.
, and
Johannsmann
,
D.
,
2010
, “
Self-Stratification During Film Formation From Latex Blends Driven by Differences in Collective Diffusivity
,”
Langmuir
,
26
(
16
), pp.
13162
13167
.
62.
Lee
,
K.
, and
Choi
,
S.
,
2020
, “
Stratification of Polymer-Colloid Mixtures via Fast Nonequilibrium Evaporation
,”
Soft Matter.
,
16
(
45
), pp.
10326
10333
.
63.
Buss
,
F.
,
Roberts
,
C. C.
,
Crawford
,
K. S.
,
Peters
,
K.
, and
Francis
,
L. F.
,
2011
, “
Effect of Soluble Polymer Binder on Particle Distribution in a Drying Particulate Coating
,”
J. Colloid Interface Sci.
,
359
(
1
), pp.
112
120
.
64.
Ma
,
F.
,
Fu
,
Y.
,
Battaglia
,
V.
, and
Prasher
,
R.
,
2019
, “
Microrheological Modeling of Lithium Ion Battery Anode Slurry
,”
J. Power Sources
,
438
, p.
226994
.
65.
Römermann
,
H.
, and
Johannsmann
,
D.
,
2019
, “
Latex Films With Gradients in Crosslink Density Created by Small-Molecule-Based Auto-stratification
,”
Eur. Phys. J. E
,
42
(
2
), p.
21
.
66.
Baesch
,
S.
,
Scharfer
,
P.
,
Schabel
,
W.
, and
Francis
,
L.
,
2017
, “
Influence of the Drying Conditions on the Particle Distribution in Particle-Filled Polymer Films: Predictive Simulation of the Particle Distribution During Drying
,”
J. Compos. Mater.
,
51
(
24
), pp.
3391
3403
.
67.
Gracia-Medrano-Bravo
,
V.-A.
,
Gröne
,
J.
,
Baesch
,
S.
,
Scharfer
,
P.
, and
Schabel
,
W.
,
2020
, “
Influence of Particle Shape on the Drying Regime Maps for Platelike Particle–Polymer Composites
,”
Langmuir
,
36
(
22
), pp.
6245
6253
.
68.
Li
,
C.-C.
, and
Wang
,
Y.-W.
,
2011
, “
Binder Distributions in Water-Based and Organic-Based LiCoO2 Electrode Sheets and Their Effects on Cell Performance
,”
J. Electrochem. Soc.
,
158
(
12
), p.
A1361
.
69.
Westphal
,
B.
,
Bockholt
,
H.
,
Gunther
,
T.
,
Haselrieder
,
W.
, and
Kwade
,
A.
,
2015
, “
Influence of Convective Drying Parameters on Electrode Performance and Physical Electrode Properties
,”
ECS Trans.
,
64
(
22
), pp.
57
68
.
70.
Jaiser
,
S.
,
Müller
,
M.
,
Baunach
,
M.
,
Bauer
,
W.
,
Scharfer
,
P.
, and
Schabel
,
W.
,
2016
, “
Investigation of Film Solidification and Binder Migration During Drying of Li-Ion Battery Anodes
,”
J. Power Sources
,
318
, pp.
210
219
.
71.
Müller
,
M.
,
Pfaffmann
,
L.
,
Jaiser
,
S.
,
Baunach
,
M.
,
Trouillet
,
V.
,
Scheiba
,
F.
,
Scharfer
,
P.
,
Schabel
,
W.
, and
Bauer
,
W.
,
2017
, “
Investigation of Binder Distribution in Graphite Anodes for Lithium-Ion Batteries
,”
J. Power Sources
,
340
, pp.
1
5
.
72.
Hawley
,
W. B.
, and
Li
,
J.
,
2019
, “
Electrode Manufacturing for Lithium-Ion Batteries—Analysis of Current and Next Generation Processing
,”
J. Energy Storage
,
25
, p.
100862
.
73.
Cerbelaud
,
M.
,
Lestriez
,
B.
,
Guyomard
,
D.
,
Videcoq
,
A.
, and
Ferrando
,
R.
,
2012
, “
Brownian Dynamics Simulations of Colloidal Suspensions Containing Polymers as Precursors of Composite Electrodes for Lithium Batteries
,”
Langmuir
,
28
(
29
), pp.
10713
10724
.
74.
Cerbelaud
,
M.
,
Lestriez
,
B.
,
Videcoq
,
A.
,
Ferrando
,
R.
, and
Guyomard
,
D.
,
2015
, “
Understanding the Structure of Electrodes in Li-Ion Batteries: A Numerical Study
,”
J. Electrochem. Soc.
,
162
(
8
), pp.
A1485
A1492
.
75.
Luo
,
H.
,
Cardinal
,
C. M.
,
Scriven
,
L. E.
, and
Francis
,
L. F.
,
2008
, “
Ceramic Nanoparticle/Monodisperse Latex Coatings
,”
Langmuir
,
24
(
10
), pp.
5552
5561
.
76.
Stein
,
M.
,
Mistry
,
A.
, and
Mukherjee
,
P. P.
,
2017
, “
Mechanistic Understanding of the Role of Evaporation in Electrode Processing
,”
J. Electrochem. Soc.
,
164
(
7
), pp.
A1616
A1627
.
77.
Font
,
F.
,
Protas
,
B.
,
Richardson
,
G.
, and
Foster
,
J. M.
,
2018
, “
Binder Migration During Drying of Lithium-Ion Battery Electrodes: Modelling and Comparison to Experiment
,”
J. Power Sources
,
393
, pp.
177
185
.
78.
Zhang
,
Y. S.
,
Courtier
,
N. E.
,
Zhang
,
Z.
,
Liu
,
K.
,
Bailey
,
J. J.
,
Boyce
,
A. M.
,
Richardson
,
G.
,
Shearing
,
P. R.
,
Kendrick
,
E.
, and
Brett
,
D. J. L.
, “
A Review of Lithium-Ion Battery Electrode Drying: Mechanisms and Metrology
,”
Adv. Energy Mater.
,
12
(
2
), p.
2102233
.
79.
Higa
,
K.
,
Zhao
,
H.
,
Parkinson
,
D. Y.
,
Barnard
,
H.
,
Ling
,
M.
,
Liu
,
G.
, and
Srinivasan
,
V.
,
2017
, “
Electrode Slurry Particle Density Mapping Using X-Ray Radiography
,”
J. Electrochem. Soc.
,
164
(
2
), pp.
A380
A388
.
80.
Susarla
,
N.
,
Ahmed
,
S.
, and
Dees
,
D. W.
,
2018
, “
Modeling and Analysis of Solvent Removal During Li-Ion Battery Electrode Drying
,”
J. Power Sources
,
378
, pp.
660
670
.
81.
Jaiser
,
S.
,
Friske
,
A.
,
Baunach
,
M.
,
Scharfer
,
P.
, and
Schabel
,
W.
,
2017
, “
Development of a Three-Stage Drying Profile Based on Characteristic Drying Stages for Lithium-Ion Battery Anodes
,”
Dry. Technol.
,
35
(
10
), pp.
1266
1275
.
82.
Hawley
,
W. B.
, and
Li
,
J.
,
2019
, “
Beneficial Rheological Properties of Lithium-Ion Battery Cathode Slurries From Elevated Mixing and Coating Temperatures
,”
J. Energy Storage
,
26
, p.
100994
.
83.
Westphal
,
B. G.
, and
Kwade
,
A.
,
2018
, “
Critical Electrode Properties and Drying Conditions Causing Component Segregation in Graphitic Anodes for Lithium-Ion Batteries
,”
J. Energy Storage
,
18
, pp.
509
517
.
84.
Burdette-Trofimov
,
M. K.
,
Armstrong
,
B. L.
,
Nelson Weker
,
J.
,
Rogers
,
A. M.
,
Yang
,
G.
,
Self
,
E. C.
,
Armstrong
,
R. R.
,
Nanda
,
J.
, and
Veith
,
G. M.
,
2020
, “
Direct Measure of Electrode Spatial Heterogeneity: Influence of Processing Conditions on Anode Architecture and Performance
,”
ACS Appl. Mater. Interfaces
,
12
(
50
), pp.
55954
55970
.
85.
Ternes
,
S.
,
Börnhorst
,
T.
,
Schwenzer
,
J. A.
,
Hossain
,
I. M.
,
Abzieher
,
T.
,
Mehlmann
,
W.
,
Lemmer
,
U.
, et al
,
2019
, “
Drying Dynamics of Solution-Processed Perovskite Thin-Film Photovoltaics: In Situ Characterization, Modeling, and Process Control
,”
Adv. Energy Mater.
,
9
(
39
), p.
1901581
.
86.
Hatzell
,
K. B.
,
Dixit
,
M. B.
,
Berlinger
,
S. A.
, and
Weber
,
A. Z.
,
2017
, “
Understanding Inks for Porous-Electrode Formation
,”
J Mater Chem A
,
5
(
39
), pp.
20527
20533
.
87.
Shukla
,
S.
,
Bhattacharjee
,
S.
,
Weber
,
A. Z.
, and
Secanell
,
M.
,
2017
, “
Experimental and Theoretical Analysis of Ink Dispersion Stability for Polymer Electrolyte Fuel Cell Applications
,”
J. Electrochem. Soc.
,
164
(
6
), pp.
F600
F609
.
88.
Singh
,
K. B.
, and
Tirumkudulu
,
M. S.
,
2007
, “
Cracking in Drying Colloidal Films
,”
Phys. Rev. Lett.
,
98
(
21
), p.
218302
.
89.
Jaiser
,
S.
,
Funk
,
L.
,
Baunach
,
M.
,
Scharfer
,
P.
, and
Schabel
,
W.
,
2017
, “
Experimental Investigation Into Battery Electrode Surfaces: The Distribution of Liquid at the Surface and the Emptying of Pores During Drying
,”
J. Colloid Interface Sci.
,
494
, pp.
22
31
.
90.
Jaiser
,
S.
,
Kumberg
,
J.
,
Klaver
,
J.
,
Urai
,
J. L.
,
Schabel
,
W.
,
Schmatz
,
J.
, and
Scharfer
,
P.
,
2017
, “
Microstructure Formation of Lithium-Ion Battery Electrodes During Drying—An Ex-Situ Study Using Cryogenic Broad Ion Beam Slope-Cutting and Scanning Electron Microscopy (Cryo-BIB-SEM)
,”
J. Power Sources
,
345
, pp.
97
107
.
91.
Loeffler
,
N.
,
von Zamory
,
J.
,
Laszczynski
,
N.
,
Doberdo
,
I.
,
Kim
,
G.-T.
, and
Passerini
,
S.
,
2014
, “
Performance of LiNi1/3Mn1/3Co1/3O2/Graphite Batteries Based on Aqueous Binder
,”
J. Power Sources
,
248
, pp.
915
922
.
92.
Lim
,
S.
,
Kim
,
S.
,
Ahn
,
K. H.
, and
Lee
,
S. J.
,
2015
, “
Stress Development of Li-Ion Battery Anode Slurries During the Drying Process
,”
Ind. Eng. Chem. Res.
,
54
(
23
), pp.
6146
6155
.
93.
Uemura
,
S.
,
Yoshida
,
T.
,
Koga
,
M.
,
Matsumoto
,
H.
,
Yang
,
X.
,
Shinohara
,
K.
,
Sasabe
,
T.
, and
Hirai
,
S.
,
2019
, “
Ink Degradation and Its Effects on the Crack Formation of Fuel Cell Catalyst Layers
,”
J. Electrochem. Soc.
,
166
(
2
), p.
F89
.
94.
Du
,
Z.
,
Rollag
,
K. M.
,
Li
,
J.
,
An
,
S. J.
,
Wood
,
M.
,
Sheng
,
Y.
,
Mukherjee
,
P. P.
,
Daniel
,
C.
, and
Wood
,
D. L.
,
2017
, “
Enabling Aqueous Processing for Crack-Free Thick Electrodes
,”
J. Power Sources
,
354
, pp.
200
206
.
95.
Rollag
,
K.
,
Juarez-Robles
,
D.
,
Du
,
Z.
,
Wood
,
D. L.
, and
Mukherjee
,
P. P.
,
2019
, “
Drying Temperature and Capillarity-Driven Crack Formation in Aqueous Processing of Li-Ion Battery Electrodes
,”
ACS Appl. Energy Mater.
,
2
(
6
), pp.
4464
4476
.
You do not currently have access to this content.