Abstract

Si material has huge lithium storage capacity, but its huge volume changes during charging and discharging making it difficult to use. However, by using nano-sizing Si material and building a coating structure can effectively reduce the capacity reduction caused by the expansion of the Si material. In our experiment, dichlorodimethylsilane was used as the silicon source and carbon source for the deposition of silicon nanofibers and SiC-coated on a spherical graphite substrate, and then the SiC cladding was deposited without changing the temperature and silicon source, and only the C to H ratio in the atmosphere was controlled to build the cladding layer. In our experiment, silicon nanofibers were deposited on graphite surfaces using dichlorodimethylsilane as the silicon source, followed by SiC cladding on the surface of the Si/G composites using dichlorodimethylsilane as the silicon source and carbon source. The end product was controlled by controlling only the C to H ratio in the atmosphere at the same temperature. The preparation of SiC@Si/G composites with silicon nanofibers and cladding structures by a single CVD process and single raw materials. The material has a silicon nanofiber structure and SiC coating structure. The presence of silicon is effective in providing very high capacity and the presence of the SiC layer is effective in improving the capacity retention of the composite material for increasing the Coulomb efficiency of the material. At a current density of 100 mA h g−1, the material has a reversible capacity of 647.3 mA h g−1 at the first cycle. After 100 cycles, it has a 76.2% retention rate. The electrodes can be extremely stable after cycling without significant swelling.

References

1.
Etacheri
,
V.
,
Marom
,
R.
,
Elazari
,
R.
,
Salitra
,
G.
, and
Aurbach
,
D.
,
2011
, “
Challenges in the Development of Advanced Li-ion Batteries: a Review
,”
Energy Environ. Sci.
,
4
(
9
), pp.
3243
3262
.
2.
Park
,
M.-H.
,
Kim
,
M. G.
,
Joo
,
J.
,
Kim
,
K.
,
Kim
,
J.
,
Ahn
,
S.
,
Cui
,
Y.
, and
Cho
,
J.
,
2009
, “
Silicon Nanotube Battery Anodes
,”
Nano Lett.
,
9
(
11
), pp.
3844
3847
.
3.
Yong
,
Y.
, and
Fan
,
L.-Z.
,
2013
, “
Silicon/Carbon Nanocomposites Used as Anode Materials for Lithium-ion Batteries
,”
Ionics
,
19
(
11
), pp.
1545
1549
.
4.
Zhang
,
M.
,
Zhang
,
T.
,
Ma
,
Y.
, and
Chen
,
Y.
,
2016
, “
Latest Development of Nanostructured Si/C Materials for Lithium Anode Studies and Applications
,”
Energy Storage Mater.
,
4
, pp.
1
14
.
5.
Shi
,
J.
,
Liang
,
Y.
,
Li
,
L.
,
Peng
,
Y.
, and
Yang
,
H.
,
2015
, “
Evaluation of the Electrochemical Characteristics of Silicon/Lithium Titanate Composite as Anode Material for Lithium ion Batteries
,”
Electrochim. Acta
,
155
, pp.
125
131
.
6.
Liu
,
B.
,
Huang
,
P.
,
Zhang
,
Q.
,
Huang
,
Q.
, and
Xie
,
Z.
,
2020
, “
Rational-Design Micro-Nanostructure of Porous Carbon Film/Silicon Nanowire/Graphite Microsphere Composites for High-Performance Lithium-ion Batteries
,”
J. Mater. Sci.
,
55
(
26
), pp.
12165
12176
.
7.
Hu
,
L.
,
Wu
,
H.
,
Hong
,
S. S.
,
Cui
,
L.
,
McDonough
,
J. R.
,
Bohy
,
S.
, and
Cui
,
Y.
,
2011
, “
Si Nanoparticle-Decorated Si Nanowire Networks for Li-ion Battery Anodes
,”
Chem. Commun.
,
47
(
1
), pp.
367
369
.
8.
Shu
,
J.
,
Ma
,
R.
,
Shui
,
M.
,
Wang
,
Y.
,
Long
,
N.
,
Wang
,
D.
,
Ren
,
Y.
,
Zhang
,
R.
,
Zheng
,
W.
, and
Gao
,
S.
,
2012
, “
Facile Fabrication of Conducting Hollow Carbon Nanofibers/Si Composites for Copper Phthalocyanine-Based Field Effect Transistors and High Performance Lithium-ion Batteries
,”
RSC Adv.
,
2
(
22
), p.
8323
.
9.
Yang
,
Y.
,
Ren
,
J. G.
,
Wang
,
X.
,
Chui
,
Y. S.
,
Wu
,
Q. H.
,
Chen
,
X.
, and
Zhang
,
W.
,
2013
, “
Graphene Encapsulated and SiC Reinforced Silicon Nanowires as an Anode Material for Lithium ion Batteries
,”
Nanoscale
,
5
(
18
), pp.
8689
8694
.
10.
Zhao
,
T.
,
She
,
S.
,
Ji
,
X.
,
Jin
,
W.
,
Dang
,
A.
,
Li
,
H.
,
Li
,
T.
,
Shang
,
S.
, and
Zhou
,
Z.
,
2017
, “
In-Situ Growth Amorphous Carbon Nanotube on Silicon Particles as Lithium-ion Battery Anode Materials
,”
J. Alloys Compd.
,
708
, pp.
500
507
.
11.
Boke
,
F.
,
Giner
,
I.
,
Keller
,
A.
,
Grundmeier
,
G.
, and
Fischer
,
H.
,
2016
, “
Plasma-Enhanced Chemical Vapor Deposition (PE-CVD) Yields Better Hydrolytical Stability of Biocompatible SiOx Thin Films on Implant Alumina Ceramics Compared to Rapid Thermal Evaporation Physical Vapor Deposition (PVD)
,”
ACS Appl. Mater. Interfaces
,
8
(
28
), pp.
17805
17816
.
12.
Liu
,
B.
,
Huang
,
P.
,
Xie
,
Z.
, and
Huang
,
Q.
,
2021
, “
Large-Scale Production of a Silicon Nanowire/Graphite Composites Anode via the CVD Method for High-Performance Lithium-Ion Batteries
,”
Energy Fuels
,
35
(
3
), pp.
2758
2765
.
13.
Kim
,
N.
,
Chae
,
S.
,
Ma
,
J.
,
Ko
,
M.
, and
Cho
,
J.
,
2017
, “
Fast-charging High-Energy Lithium-ion Batteries via Implantation of Amorphous Silicon Nanolayer in Edge-Plane Activated Graphite Anodes
,”
Nat. Commun.
,
8
(
1
), pp.
1
10
.
14.
Yang
,
L. Y.
,
Li
,
H. Z.
,
Liu
,
J.
,
Sun
,
Z. Q.
,
Tang
,
S. S.
, and
Lei
,
M.
, “
Dual Yolk-Shell Structure of Carbon and Silica-Coated Silicon for High-Performance Lithium-ion Batteries
,”
Sci. Rep.
,
5
(
1
), pp.
1
9
.
15.
Huang
,
P.
,
Liu
,
B.
,
Zhang
,
J.
,
Liu
,
M.
, and
Xie
,
Z.
,
2021
, “
Silicon/Carbon Composites Based on Natural Microcrystalline Graphite as Anode for Lithium-ion Batteries
,”
Ionics
,
27
(
5
), pp.
1957
1966
.
16.
Liu
,
B.
,
Huang
,
P.
,
Liu
,
M.
, and
Xie
,
Z.
,
2021
, “
Utilization of Impurities and Carbon Defects in Natural Microcrystalline Graphite to Prepare Silicon-Graphite Composite Anode for High-Performance Lithium-ion Batteries
,”
J. Mater. Sci.
,
56
(
31
), pp.
17682
17693
.
17.
Baek
,
S.-H.
,
Jeong
,
Y.-M.
,
Chul Shin
,
S.
,
Joon Choi
,
B.
, and
Hwan Han
,
J.
,
2021
, “
Tunable Solid Electrolyte Interphase Formation on SiO Anodes Using SnO Artificial Layers for Lithium-ion Batteries
,”
Appl. Surf. Sci.
,
549
, p.
149028
.
18.
Wang
,
Z.
,
Mao
,
Z.
,
Lai
,
L.
,
Okubo
,
M.
,
Song
,
Y.
,
Zhou
,
Y.
,
Liu
,
X.
, and
Huang
,
W.
,
2017
, “
Sub-Micron Silicon/Pyrolyzed Carbon@Natural Graphite Self-Assembly Composite Anode Material for Lithium-ion Batteries
,”
Chem. Eng. J.
,
313
, pp.
187
196
.
19.
Harpak
,
N.
,
Davidi
,
G.
,
Melamed
,
Y.
,
Cohen
,
A.
, and
Patolsky
,
F.
,
2020
, “
Self-Catalyzed Vertically Aligned Carbon Nanotube-Silicon Core-Shell Array for Highly Stable, High-Capacity Lithium-Ion Batteries
,”
Langmuir
,
36
(
4
), pp.
889
896
.
20.
Yang
,
Y.
, and
Zhang
,
W. G.
,
2009
, “
Chemical Vapor Deposition of SiC at Different Molar Ratios of Hydrogen to Methyltrichlorosilane
,”
J. Cent. South Univ. Technol.
,
16
(
5
), pp.
730
737
.
21.
Fischman
,
G. S.
, and
Petuskey
,
W. T.
,
1985
, “
Thermodynamic Analysis and Kinetic Implications of Chemical Vapor Deposition of Sic From Si-C-C1-H Gas Systems
,”
J. Am. Ceram. Soc.
,
68
(
4
), pp.
185
190
.
22.
Deng
,
J.
,
Su
,
K.
,
Wang
,
X.
,
Zeng
,
Q.
,
Cheng
,
L.
,
Xu
,
Y.
, and
Zhang
,
L.
,
2009
, “
Thermodynamics of the gas-Phase Reactions in Chemical Vapor Deposition of Silicon Carbide With Methyltrichlorosilane Precursor
,”
Theor. Chem. Acc.
,
122
(
1
), pp.
1
22
.
23.
Qiang
,
X.
,
Li
,
H.
,
Zhang
,
Y.
,
Wang
,
Z.
, and
Ba
,
Z.
,
2016
, “
Synthesis and Toughening Effect of SiC Nanowires Wrapped by Carbon Nanosheet on C/C Composites
,”
J. Alloys Compd.
,
676
, pp.
245
250
.
24.
Ikoma
,
Y.
,
Hayano
,
K.
,
Edalati
,
K.
,
Saito
,
K.
,
Guo
,
Q.
,
Horita
,
Z.
,
Aoki
,
T.
, and
Smith
,
D. J.
,
2014
, “
Fabrication of Nanograined Silicon by High-Pressure Torsion
,”
J. Mater. Sci.
,
49
(
19
), pp.
6565
6569
.
25.
Michan
,
A. L.
,
Leskes
,
M.
, and
Grey
,
C. P.
,
2015
, “
Voltage Dependent Solid Electrolyte Interphase Formation in Silicon Electrodes: Monitoring the Formation of Organic Decomposition Products
,”
Chem. Mater.
,
28
(
1
), pp.
385
398
.
26.
Zhou
,
Y.
,
Guo
,
H.
,
Yang
,
Y.
,
Wang
,
Z.
,
Li
,
X.
,
Zhou
,
R.
, and
Peng
,
W.
,
2016
, “
Facile Synthesis of Silicon/Carbon Nanospheres Composite Anode Materials for Lithium-ion Batteries
,”
Mater. Lett.
,
168
, pp.
138
142
.
27.
Zhou
,
X.
,
Wan
,
L. J.
, and
Guo
,
Y. G.
,
2013
, “
Electrospun Silicon Nanoparticle/Porous Carbon Hybrid Nanofibers for Lithium-ion Batteries
,”
Small
,
9
(
16
), pp.
2684
2688
.
28.
Sun
,
C.
,
Wang
,
Y.-J.
,
Gu
,
H.
,
Fan
,
H.
,
Yang
,
G.
,
Ignaszak
,
A.
,
Tang
,
X.
,
Liu
,
D.
, and
Zhang
,
J.
,
2020
, “
Interfacial Coupled Design of Epitaxial Graphene@SiC Schottky Junction with Built-in Electric Field for High-Performance Anodes of Lithium ion Batteries
,”
Nano Energy
,
77
, p.
105092
.
29.
Sun
,
C.
,
Deng
,
Y.
,
Wan
,
L.
,
Qin
,
X.
, and
Chen
,
G.
,
2014
, “
Graphene Oxide-Immobilized NH(2)-Terminated Silicon Nanoparticles by Cross-Linked Interactions for Highly Stable Silicon Negative Electrodes
,”
ACS Appl. Mater. Interfaces
,
6
(
14
), pp.
11277
11285
.
30.
Li
,
C.
,
Liu
,
C.
,
Wang
,
W.
,
Bell
,
J.
,
Mutlu
,
Z.
,
Ahmed
,
K.
,
Ye
,
R.
,
Ozkan
,
M.
, and
Ozkan
,
C. S.
,
2016
, “
Towards Flexible Binderless Anodes: Silicon/Carbon Fabrics via Double-Nozzle Electrospinning
,”
Chem. Commun.
,
52
(
76
), pp.
11398
11401
.
31.
Zhang
,
H.
, and
Xu
,
H.
,
2014
, “
Nanocrystalline Silicon Carbide Thin Film Electrodes for Lithium-ion Batteries
,”
Solid State Ionics
,
263
, pp.
23
26
.
You do not currently have access to this content.