Abstract

The development of highly active and stable electrocatalysts is a major challenge for water electrolysis. In this work, we designed bimetallic nitrogen-doped carbon (NiCo-NC) materials with excellent performance, which were pyrolyzed by the core-shell structure of Ni-ZIF-8@ZIF-67. Then, the low-Pt supported Pt@NiCo-NC catalyst was prepared by the impregnation liquid-phase reduction method. During the hydrogen evolution reaction (HER), the catalyst exhibited an overpotential of 31.1 mV and stability in an acidic medium at a current density of 10 mA/cm2. It is worth noting that the overpotential and Tafel slope of the catalyst are both smaller than commercial Pt/C, indicating high catalytic activity. The loading of commercial Pt/C (TKK, 46 wt%) on the electrode was 100 µg/cm2, while the loading of Pt@NiCo-NC-2 wt% was only 6.58 µg/cm2. The presence of bimetals and carbon nanotubes (CNTs) not only improve the hydrogen evolution activity of the catalyst, but also enhance the electrochemical stability. It can be expected that this work will provide important insights for studies based on catalyst supports and improving performance.

References

1.
Mohammed-Ibrahim
,
J.
, and
Sun
,
X. M.
,
2019
, “
Recent Progress on Earth Abundant Electrocatalysts for Hydrogen Evolution Reaction (HER) in Alkaline Medium to Achieve Efficient Water Splitting—A Review
,”
J. Energy Chem.
,
34
, pp.
111
160
.
2.
Murthy
,
A. P.
,
Madhavan
,
J.
, and
Murugan
,
K.
,
2018
, “
Recent Advances in Hydrogen Evolution Reaction Catalysts on Carbon/Carbon-Based Supports in Acid Media
,”
J. Power Sources
,
398
(
15
), pp.
9
26
.
3.
Fu
,
Y.
,
Yu
,
H. Y.
,
Jiang
,
C.
,
Zhang
,
T. H.
,
Zhan
,
R.
,
Li
,
X. W.
,
Li
,
J. F.
,
Tian
,
J. H.
, and
Yang
,
R. Z.
,
2018
, “
NiCo Alloy Nanoparticles Decorated on N-Doped Carbon Nanofibers as Highly Active and Durable Oxygen Electrocatalyst
,”
Adv. Funct. Mater.
,
28
(
9
), p.
10
.
4.
Yu
,
C.
,
Lu
,
J. J.
,
Luo
,
L.
,
Xu
,
F.
,
Shen
,
P. K.
,
Tsiakaras
,
P.
, and
Yin
,
S. B.
,
2019
, “
Bifunctional Catalysts for Overall Water Splitting: CoNi Oxyhydroxide Nanosheets Electrodeposited on Titanium Sheets
,”
Electrochim. Acta
,
301
(
1
), pp.
449
457
.
5.
Faber
,
M. S.
, and
Jin
,
S.
,
2014
, “
Earth-Abundant Inorganic Electrocatalysts and Their Nanostructures for Energy Conversion Applications
,”
Energy Environ. Sci.
,
7
(
11
), pp.
3519
3542
.
6.
Shang
,
X.
,
Liu
,
Z. Z.
,
Lu
,
S. S.
,
Dong
,
B.
,
Chi
,
J. Q.
,
Qin
,
J. F.
,
Liu
,
X.
,
Chai
,
Y. M.
, and
Liu
,
C. G.
,
2018
, “
Pt-C Interfaces Based on Electronegativity-Functionalized Hollow Carbon Spheres for Highly Efficient Hydrogen Evolution
,”
ACS Appl. Mater. Interfaces
,
10
(
50
), pp.
43561
43569
.
7.
Soliman
,
A. B.
,
Hassan
,
M. H.
,
Huan
,
T. N.
,
Abugable
,
A. A.
,
Elmehalmey
,
W. A.
,
Karakalos
,
S. G.
,
Tsotsalas
,
M.
, et al
,
2017
, “
Pt Immobilization Within a Tailored Porous-Organic Polymer Graphene Composite: Opportunities in the Hydrogen Evolving Reaction
,”
ACS Catal.
,
7
(
11
), pp.
7847
7854
.
8.
You
,
B.
, and
Sun
,
Y. J.
,
2018
, “
Innovative Strategies for Electrocatalytic Water Splitting
,”
Acc. Chem. Res.
,
51
(
7
), pp.
1571
1580
.
9.
Liu
,
P. T.
,
Zhu
,
J. Y.
,
Zhang
,
J. Y.
,
Tao
,
K.
,
Gao
,
D. Q.
, and
Xi
,
P. X.
,
2018
, “
Active Basal Plane Catalytic Activity and Conductivity in Zn Doped MoS2 Nanosheets for Efficient Hydrogen Evolution
,”
Electrochim. Acta
,
260
(
10
), pp.
24
30
.
10.
Seh
,
Z. W.
,
Kibsgaard
,
J.
,
Dickens
,
C. F.
,
Chorkendorff
,
I. B.
,
Norskov
,
J. K.
, and
Jaramillo
,
T. F.
,
2017
, “
Combining Theory and Experiment in Electrocatalysis: Insights Into Materials Design
,”
Science
,
355
(
6321
), p.
eaad4998
.
11.
Hu
,
J.
,
Kuttiyiel
,
K. A.
,
Sasaki
,
K.
,
Zhang
,
C. X.
, and
Adzic
,
R. R.
,
2018
, “
Determination of Hydrogen Oxidation Reaction Mechanism Based on Pt-H-ad Energetics in Alkaline Electrolyte
,”
J. Electrochem. Soc.
,
165
(
15
), pp.
J3355
J3362
.
12.
Elbert
,
K.
,
Hu
,
J.
,
Ma
,
Z.
,
Zhang
,
Y.
,
Chen
,
G. Y.
,
An
,
W.
,
Liu
,
P.
,
Isaacs
,
H. S.
,
Adzic
,
R. R.
, and
Wang
,
J. X.
,
2015
, “
Elucidating Hydrogen Oxidation/Evolution Kinetics in Base and Acid by Enhanced Activities at the Optimized Pt Shell Thickness on the Ru Core
,”
ACS Catal.
,
5
(
11
), pp.
6764
6772
.
13.
Liu
,
P.
, and
Rodriguez
,
J. A.
,
2005
, “
Catalysts for Hydrogen Evolution From the NiFe Hydrogenase to the Ni2P(001) Surface: The Importance of Ensemble Effect
,”
J. Am. Chem. Soc.
,
127
(
42
), pp.
14871
14878
.
14.
Pan
,
Y.
,
Liu
,
Y. R.
,
Zhao
,
J. C.
,
Yang
,
K.
,
Liang
,
J. L.
,
Liu
,
D. D.
,
Hu
,
W. H.
,
Liu
,
D. P.
,
Liu
,
Y. Q.
, and
Liu
,
C. G.
,
2015
, “
Monodispersed Nickel Phosphide Nanocrystals With Different Phases: Synthesis, Characterization and Electrocatalytic Properties for Hydrogen Evolution
,”
J. Mater. Chem. A
,
3
(
4
), pp.
1656
1665
.
15.
Zhang
,
Q. Y.
,
Zhang
,
Y. T.
,
Chong
,
J. S.
,
Li
,
H.
, and
Ma
,
P. H.
,
2020
, “
An Overview of Metal-Organic Frameworks-Based Acid/Base Catalysts for Biofuel Synthesis
,”
Curr. Org. Chem.
,
24
(
15
), pp.
1876
1891
.
16.
Liu
,
Q. J.
,
Sun
,
N. R.
, and
Deng
,
C. H.
,
2019
, “
Recent Advances in Metal-Organic Frameworks for Separation and Enrichment in Proteomics Analysis
,”
Trac-Trends Anal. Chem.
,
110
, pp.
66
80
.
17.
Gomar
,
M.
, and
Yeganegi
,
S.
,
2019
, “
Adsorption of 5-Fluorouracil and Thioguanine Drugs Into ZIF-1, ZIF-3 and ZIF-6 by Simulation Methods
,”
Mater. Sci. Eng. C-Mater. Biol. Appl.
,
97
, pp.
461
466
.
18.
Melgar
,
V. M. A.
,
Kim
,
J.
, and
Othman
,
M. R.
,
2015
, “
Zeolitic Imidazolate Framework Membranes for Gas Separation: A Review of Synthesis Methods and Gas Separation Performance
,”
J. Ind. Eng. Chem.
,
28
(
25
), pp.
1
15
.
19.
Xuan
,
C. J.
,
Wang
,
J. E.
,
Zhu
,
J.
, and
Wang
,
D. L.
,
2017
, “
Recent Progress of Metal Organic Frameworks-Based Nanomaterials for Electrocatalysis
,”
Acta Phys.-Chim. Sin.
,
33
(
1
), pp.
149
164
.
20.
Liu
,
Z. Q.
,
Cheng
,
H.
,
Li
,
N.
,
Ma
,
T. Y.
, and
Su
,
Y. Z.
,
2016
, “
ZnCo2O4 Quantum Dots Anchored on Nitrogen-Doped Carbon Nanotubes as Reversible Oxygen Reduction/Evolution Electrocatalysts
,”
Adv. Mater.
,
28
(
19
), pp.
3777
3784
.
21.
Stavila
,
V.
,
Talin
,
A. A.
, and
Allendorf
,
M. D.
,
2014
, “
MOF-Based Electronic and Optoelectronic Devices
,”
Chem. Soc. Rev.
,
43
(
16
), pp.
5994
6010
.
22.
Li
,
M. F.
,
Duanmu
,
K. N.
,
Wan
,
C. Z.
,
Cheng
,
T.
,
Zhang
,
L.
,
Dai
,
S.
,
Chen
,
W. X.
, et al
,
2019
, “
Single-Atom Tailoring of Platinum Nanocatalysts for High-Performance Multifunctional Electrocatalysis
,”
Nat. Catal.
,
2
(
6
), pp.
495
503
.
23.
Li
,
D. B.
,
Li
,
X. Y.
,
Chen
,
S. M.
,
Yang
,
H.
,
Wang
,
C. D.
,
Wu
,
C. Q.
,
Haleem
,
Y. A.
, et al
,
2019
, “
Atomically Dispersed Platinum Supported on Curved Carbon Supports for Efficient Electrocatalytic Hydrogen Evolution
,”
Nat. Energy
,
4
(
6
), pp.
512
518
.
24.
Du
,
Z. K.
,
Wang
,
Y. L.
,
Li
,
J. S.
, and
Liu
,
J. P.
,
2019
, “
Facile Fabrication of Pt-Ni Alloy Nanoparticles Supported on Reduced Graphene Oxide as Excellent Electrocatalysts for Hydrogen Evolution Reaction in Alkaline Environment
,”
J. Nanopart. Res.
,
21
(
1
), p.
15
.
25.
Tiwari
,
J. N.
,
Sultan
,
S.
,
Myung
,
C. W.
,
Yoon
,
T.
,
Li
,
N. N.
,
Ha
,
M. R.
,
Harzandi
,
A. M.
, et al
,
2019
, “
Multicomponent Electrocatalyst With Ultralow Pt Loading and High Hydrogen Evolution Activity
,”
Nat. Energy
,
4
(
3
), pp.
249
249
.
26.
Yang
,
F.
,
Zhao
,
Y.
,
Du
,
Y.
,
Chen
,
Y.
,
Cheng
,
G.
,
Chen
,
S.
, and
Luo
,
W.
,
2018
, “
A Monodisperse Rh2P-based Electrocatalyst for Highly Efficient and pH-Universal Hydrogen Evolution Reaction
,”
Adv. Energy Mater.
,
8
(
18
), p.
1703489
.
27.
Zhang
,
L. S.
,
Lu
,
J. J.
,
Yin
,
S. B.
,
Luo
,
L.
,
Jing
,
S. Y.
,
Brouzgou
,
A.
,
Chen
,
J. H.
,
Shen
,
P. K.
, and
Tsiakaras
,
P.
,
2018
, “
One-Pot Synthesized Boron-Doped RhFe Alloy With Enhanced Catalytic Performance for Hydrogen Evolution Reaction
,”
Appl. Catal. B-Environ.
,
230
(
15
), pp.
58
64
.
28.
Yu
,
K. M.
,
Ning
,
G. Q.
,
Yang
,
J. T.
,
Wang
,
Y.
,
Zhang
,
X.
,
Qin
,
Y. C.
,
Luan
,
C. L.
, et al
,
2019
, “
Restructured PtNi on Ultrathin Nickel Hydroxide for Enhanced Performance in Hydrogen Evolution and Methanol Oxidation
,”
J. Catal.
,
375
, pp.
267
278
.
29.
Fan
,
L. L.
,
Du
,
X. X.
,
Zhou
,
S. N.
,
Yang
,
P.
,
Li
,
M. F.
,
Kang
,
Z. X.
,
Guo
,
H. L.
, et al
,
2019
, “
Efficient Platinum Harvesting of MOF-Derived N-Doped Carbon Through Cathodic Cyclic Voltammetry for Hydrogen Evolution
,”
Electrochim. Acta
,
317
(
10
), pp.
173
181
.
30.
Lee
,
Y. R.
,
Jang
,
M. S.
,
Cho
,
B. Y.
,
Kwon
,
H. J.
,
Kim
,
S.
, and
Ahn
,
W. S.
,
2015
, “
ZIF-8: A Comparison of Synthesis Methods
,”
Chem. Eng. J.
,
271
(
1
), pp.
276
280
.
31.
Ul Haq
,
I.
,
Li
,
S. H.
,
Zhen
,
H. G.
,
Khan
,
R.
,
Zhang
,
A. S.
, and
Zhao
,
Z. P.
,
2020
, “
Highly Efficient Separation of 1, 3-Butadiene From Nitrogen Mixture by Adsorption on Highly Stable MOF
,”
Chem. Eng. J.
,
402
(
15
), p.
125980
.
32.
Li
,
R.
,
Ren
,
X. Q.
,
Ma
,
H. W.
,
Feng
,
X.
,
Lin
,
Z. G.
,
Li
,
X. G.
,
Hu
,
C. W.
, and
Wang
,
B.
,
2014
, “
Nickel-Substituted Zeolitic Imidazolate Frameworks for Time-Resolved Alcohol Sensing and Photocatalysis Under Visible Light
,”
J. Mater. Chem. A
,
2
(
16
), pp.
5724
5729
.
33.
Zhou
,
C. X.
,
Cui
,
K.
,
Liu
,
Y.
,
Hao
,
S. J.
,
Zhang
,
L. N.
,
Ge
,
S. G.
, and
Yu
,
J. H.
,
2021
, “
Ultrasensitive Microfluidic Paper-Based Electrochemical/Visual Analytical Device Via Signal Amplification of Pd@Hollow Zn/Co Core-Shell ZIF67/ZIF8 Nanoparticles for Prostate-Specific Antigen Detection
,”
Anal. Chem.
,
93
(
13
), pp.
5459
5467
.
34.
Gao
,
M. R.
,
Liang
,
J. X.
,
Zheng
,
Y. R.
,
Xu
,
Y. F.
,
Jiang
,
J.
,
Gao
,
Q.
,
Li
,
J.
, and
Yu
,
S. H.
,
2015
, “
An Efficient Molybdenum Disulfide/Cobalt Diselenide Hybrid Catalyst for Electrochemical Hydrogen Generation
,”
Nat. Commun.
,
6
(
1
), p.
7
.
35.
Yang
,
C. L.
,
Wang
,
L. N.
,
Yin
,
P.
,
Liu
,
J. Y.
,
Chen
,
M. X.
,
Yan
,
Q. Q.
,
Wang
,
Z. S.
, et al
,
2021
, “
Sulfur-Anchoring Synthesis of Platinum Intermetallic Nanoparticle Catalysts for Fuel Cells
,”
Science
,
374
(
6566
), pp.
459
4641
.
You do not currently have access to this content.