Abstract

A macroscopic architecture design of lithium metal electrodes for solving the problem of extremely excessive lithium metal is proposed in this paper. By employing a simple mechanical processing method, macroscopic hollows within lithium foils are introduced, and consequently, the amount of lithium metal has economized significantly. The cyclability of lithium foils with millimeter-size hollows is evaluated jointly via modeling and experiments. The results suggest that the well-designed macroscopic hollow causes controllable sacrifices of battery cycling performances and considerably boosts the utilization of lithium metal. The relationship of economization, cyclability, and utilization of lithium metal is also discussed. The universality of the results is also verified in different battery systems. Meanwhile, the initial hollows are found to heal morphologically after a series of electrochemical cycles, and the existence of lithium metal in the healing product is also confirmed, indicating that hollows provide room for the in-plane lithium dendrite growth. Based on these findings, this work provides a new perspective on the architectural design of lithium metal electrodes.

References

1.
Whittingham
,
M. S.
,
2008
, “
Materials Challenges Facing Electrical Energy Storage
,”
MRS Bull.
,
33
(
4
), pp.
411
419
.
2.
Sun
,
Y. M.
,
Liu
,
N.
, and
Cui
,
Y.
,
2016
, “
Promises and Challenges of Nanomaterials for Lithium-Based Rechargeable Batteries
,”
Nat. Energy
,
1
(
7
), p.
16071
.
3.
Armand
,
M.
, and
Tarascon
,
J.-M.
,
2008
, “
Building Better Batteries
,”
Nature
,
451
(
7179
), pp.
652
657
.
4.
Lin
,
D. C.
,
Liu
,
Y. Y.
, and
Cui
,
Y.
,
2017
, “
Reviving the Lithium Metal Anode for High-Energy Batteries
,”
Nat. Nanotechnol.
,
12
(
3
), pp.
194
206
.
5.
Liu
,
B.
,
Zhang
,
J.-G.
, and
Xu
,
W.
,
2018
, “
Advancing Lithium Metal Batteries
,”
Joule
,
2
(
5
), pp.
833
845
.
6.
Lang
,
J. L.
,
Qi
,
L. H.
,
Luo
,
Y. Z.
, and
Wu
,
H.
,
2017
, “
High Performance Lithium Metal Anode: Progress and Prospects
,”
Energy Storage Mater.
,
7
, pp.
115
129
.
7.
Pang
,
Q.
,
Liang
,
X.
,
Kwok
,
C. Y.
, and
Nazar
,
L. F.
,
2016
, “
Advances in Lithium–Sulfur Batteries Based on Multifunctional Cathodes and Electrolytes
,”
Nat. Energy
,
1
(
9
), p.
16132
.
8.
Bruce
,
P. G.
,
Freunberger
,
S. A.
,
Hardwick
,
L. J.
, and
Tarascon
,
J.-M.
,
2012
, “
Li–O2 and Li–S Batteries With High Energy Storage
,”
Nat. Mater.
,
11
(
1
), pp.
19
29
.
9.
Jung
,
H.-G.
,
Hassoun
,
J.
,
Park
,
J.-B.
,
Sun
,
Y.-K.
, and
Scrosati
,
B.
,
2012
, “
An Improved High-Performance Lithium–Air Battery
,”
Nat. Chem.
,
4
(
7
), pp.
579
585
.
10.
Manthiram
,
A.
,
Yu
,
X. W.
, and
Wang
,
S. F.
,
2017
, “
Lithium Battery Chemistries Enabled by Solid-State Electrolytes
,”
Nat. Reviews Mater.
,
2
(
4
), p.
16103
.
11.
Albertus
,
P.
,
Babinec
,
S.
,
Litzelman
,
S.
, and
Newman
,
A.
,
2018
, “
Status and Challenges in Enabling the Lithium Metal Electrode for High-Energy and Low-Cost Rechargeable Batteries
,”
Nat. Energy
,
3
(
1
), pp.
16
21
.
12.
Wang
,
H.
,
Matsui
,
M.
,
Kuwata
,
H.
,
Sonoki
,
H.
,
Matsuda
,
Y.
,
Shang
,
X. F.
,
Takeda
,
Y.
,
Yamamoto
,
O.
, and
Imanishi
,
N.
,
2017
, “
A Reversible Dendrite-Free High-Areal-Capacity Lithium Metal Electrode
,”
Nat. Commun.
,
8
(
1
), p.
15106
.
13.
Jiao
,
S. H.
,
Zheng
,
J. M.
,
Li
,
Q. Y.
,
Li
,
X.
,
Engelhard
,
M. H.
,
Cao
,
R. G.
,
Zhang
,
J.-G.
, and
Xu
,
W.
,
2018
, “
Behavior of Lithium Metal Anodes Under Various Capacity Utilization and High Current Density in Lithium Metal Batteries
,”
Joule
,
2
(
1
), pp.
110
124
.
14.
Liu
,
D. H.
,
Gao
,
X. Y.
,
An
,
H. Z.
,
Qi
,
Y. B.
,
Sun
,
X. Q.
,
Wang
,
Z.
,
Chen
,
Z. H.
,
An
,
F.
, and
Jia
,
N. F.
,
2019
, “
Supply and Demand Response Trends of Lithium Resources Driven by the Demand of Emerging Renewable Energy Technologies in China
,”
Resour. Conserv. Recycl
,
145
, pp.
311
321
.
15.
Martin
,
G.
,
Rentsch
,
L.
,
Höck
,
M.
, and
Bertau
,
M.
,
2017
, “
Lithium Market Research-Global Supply, Future Demand and Price Development
,”
Energy Storage Mater.
,
6
, pp.
171
179
.
16.
Schmuch
,
R.
,
Wagner
,
R.
,
Hörpel
,
G.
,
Placke
,
T.
, and
Winter
,
M.
,
2018
, “
Performance and Cost of Materials for Lithium-Based Rechargeable Automotive Batteries
,”
Nat. Energy
,
3
(
4
), pp.
267
278
.
17.
Chen
,
H.
,
Yang
,
Y. F.
,
Boyle
,
D. T.
,
Jeong
,
Y. K.
,
Xu
,
R.
,
de Vasconcelos
,
L. S.
,
Huang
,
Z. J.
, et al
,
2021
, “
Free-Standing Ultrathin Lithium Metal–Graphene Oxide Host Foils With Controllable Thickness for Lithium Batteries
,”
Nat. Energy
,
6
(
8
), pp.
790
798
.
18.
Masias
,
A.
,
Felten
,
N.
,
Garcia-Mendez
,
R.
,
Wolfenstine
,
J.
, and
Sakamoto
,
J.
,
2019
, “
Elastic, Plastic, and Creep Mechanical Properties of Lithium Metal
,”
J. Mater. Sci.
,
54
(
3
), pp.
2585
2600
.
19.
Xie
,
Z. K.
,
Wu
,
Z. J.
,
An
,
X. W.
,
Yue
,
X. Y.
,
Wang
,
J. J.
,
Abudula
,
A.
, and
Guan
,
G. Q.
,
2020
, “
Anode-Free Rechargeable Lithium Metal Batteries: Progress and Prospects
,”
Energy Storage Mater.
,
32
, pp.
386
401
.
20.
Louli
,
A. J.
,
Genovese
,
M.
,
Weber
,
R.
,
Hames
,
S. G.
,
Logan
,
E. R.
, and
Dahn
,
J. R.
,
2019
, “
Exploring the Impact of Mechanical Pressure on the Performance of Anode-Free Lithium Metal Cells
,”
J. Electrochem. Soc.
,
166
(
8
), pp.
A1291
A1299
.
21.
Weber
,
R.
,
Genovese
,
M.
,
Louli
,
A. J.
,
Hames
,
S.
,
Martin
,
C.
,
Hill
,
I. G.
, and
Dahn
,
J. R.
,
2019
, “
Long Cycle Life and Dendrite-Free Lithium Morphology in Anode-Free Lithium Pouch Cells Enabled by a Dual-Salt Liquid Electrolyte
,”
Nat. Energy
,
4
(
8
), pp.
683
689
.
22.
Ryou
,
M.-H.
,
Lee
,
Y. M.
,
Lee
,
Y.
,
Winter
,
M.
, and
Bieker
,
P.
,
2015
, “
Mechanical Surface Modification of Lithium Metal: Towards Improved Li Metal Anode Performance by Directed Li Plating
,”
Adv. Funct. Mater.
,
25
(
6
), pp.
834
841
.
23.
Park
,
J.
,
Jeong
,
J.
,
Lee
,
Y.
,
Oh
,
M.
,
Ryou
,
M.-H.
, and
Lee
,
Y. M.
,
2016
, “
Micro-Patterned Lithium Metal Anodes With Suppressed Dendrite Formation for Post Lithium-Ion Batteries
,”
Adv. Mater. Interfaces
,
3
(
11
), p.
1600140
.
24.
Park
,
J.
,
Kim
,
D.
,
Jin
,
D.
,
Phatak
,
C.
,
Cho
,
K. Y.
,
Lee
,
Y.-G.
,
Hong
,
S.
,
Ryou
,
M.-H.
, and
Lee
,
Y. M.
,
2018
, “
Size Effects of Micro-Pattern on Lithium Metal Surface on the Electrochemical Performance of Lithium Metal Secondary Batteries
,”
J. Power Sources
,
408
, pp.
136
142
.
25.
Li
,
Q.
,
Quan
,
B. G.
,
Li
,
W. J.
,
Lu
,
J. Z.
,
Zheng
,
J. Y.
,
Yu
,
X. Q.
,
Li
,
J. J.
, and
Li
,
H.
,
2018
, “
Electro-Plating and Stripping Behavior on Lithium Metal Electrode With Ordered Three-Dimensional Structure
,”
Nano Energy
,
45
, pp.
463
470
.
26.
Kim
,
S.
,
Park
,
J.
,
Friesen
,
A.
,
Lee
,
H.
,
Lee
,
Y. M.
, and
Ryou
,
M.-H.
,
2018
, “
Composite Protection Layers for Dendrite-Suppressing Non-Granular Micro-Patterned Lithium Metal Anodes
,”
Electrochim. Acta
,
282
, pp.
343
350
.
27.
Wang
,
M.
,
Xiao
,
X. R.
, and
Huang
,
X. S.
,
2017
, “
A Multiphysics Microstructure-Resolved Model for Silicon Anode Lithium-Ion Batteries
,”
J. Power Sources
,
348
, pp.
66
79
.
28.
Xu
,
M.
,
Zhang
,
Z. Q.
,
Wang
,
X.
,
Jia
,
L.
, and
Yang
,
L. X.
,
2015
, “
A Pseudo Three-Dimensional Electrochemical–Thermal Model of a Prismatic LiFePO4 Battery During Discharge Process
,”
Energy
,
80
, pp.
303
317
.
29.
Doyle
,
M.
,
Fuller
,
T. F.
, and
Newman
,
J.
,
1993
, “
Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
,”
J. Electrochem. Soc.
,
140
(
6
), pp.
1526
1533
.
30.
Fuller
,
T. F.
,
Doyle
,
M.
, and
Newman
,
J.
,
1994
, “
Simulation and Optimization of the Dual Lithium Ion Insertion Cell
,”
J. Electrochem. Soc.
,
141
(
1
), pp.
1
10
.
31.
Ding
,
Z. Y.
,
Li
,
X. C.
,
Wei
,
T. R.
,
Yin
,
Z. L.
, and
Li
,
X. H.
,
2016
, “
Improved Compatibility of Graphite Anode for Lithium Ion Battery Using Sulfuric Esters
,”
Electrochim. Acta
,
196
, pp.
622
628
.
32.
Zou
,
L.
,
Kang
,
F. Y.
,
Li
,
X. L.
,
Zheng
,
Y.-P.
,
Shen
,
W. C.
, and
Zhang
,
J.
,
2008
, “
Investigations on the Modified Natural Graphite as Anode Materials in Lithium Ion Battery
,”
J. Phys. Chem. Solids
,
69
(
5–6
), pp.
1265
1271
.
33.
Striebel
,
K. A.
,
Sierra
,
A.
,
Shim
,
J.
,
Wang
,
C.-W.
, and
Sastry
,
A. M.
,
2004
, “
The Effect of Compression on Natural Graphite Anode Performance and Matrix Conductivity
,”
J. Power Sources
,
134
(
2
), pp.
241
251
.
34.
Gnanaraj
,
J. S.
,
Thompson
,
R. W.
,
Iaconatti
,
S. N.
,
DiCarlo
,
J. F.
, and
Abraham
,
K. M.
,
2005
, “
Formation and Growth of Surface Films on Graphitic Anode Materials for Li-Ion Batteries
,”
Electrochem. Solid-State Lett.
,
8
(
2
), p.
A128
.
35.
Ding
,
F.
,
Xu
,
W.
,
Choi
,
D.
,
Wang
,
W.
,
Li
,
X. L.
,
Engelhard
,
M. H.
,
Chen
,
X. L.
,
Yang
,
Z. G.
, and
Zhang
,
J.-G.
,
2012
, “
Enhanced Performance of Graphite Anode Materials by AlF3 Coating for Lithium-Ion Batteries
,”
J. Mater. Chem.
,
22
(
25
), p.
12745
.
36.
Yeh
,
T.-S.
,
Wu
,
Y.-S.
, and
Lee
,
Y.-H.
,
2011
, “
Graphitization of Unburned Carbon From Oil-Fired Fly Ash Applied for Anode Materials of High Power Lithium Ion Batteries
,”
Mater. Chem. Phys.
,
130
(
1–2
), pp.
309
315
.
37.
Chidiac
,
J.
,
Timperman
,
L.
, and
Anouti
,
M.
,
2022
, “
Physical Properties and Compatibility With Graphite and Lithium Metal Anodes of Non-Flammable Deep Eutectic Solvent as a Safe Electrolyte for High Temperature Li-Ion Batteries
,”
Electrochim. Acta
,
408
, p.
139944
.
38.
Chen
,
X.
, and
Zhang
,
Q.
,
2020
, “
Atomic Insights Into the Fundamental Interactions in Lithium Battery Electrolytes
,”
Acc. Chem. Res.
,
53
(
9
), pp.
1992
2002
.
39.
Wen
,
S. H.
,
Lu
,
B.
,
Zhao
,
Y. F.
,
Song
,
Y. C.
, and
Zhang
,
J. Q.
,
2021
, “
Feigned Death Induced by Partial Delithiation in Silicon Composite Electrodes
,”
J. Power Sources
,
495
, p.
229763
.
40.
Li
,
Y.
,
Lu
,
B.
,
Guo
,
B. K.
,
Song
,
Y. C.
, and
Zhang
,
J. Q.
,
2019
, “
Partial Lithiation Strategies for Suppressing Degradation of Silicon Composite Electrodes
,”
Electrochim. Acta
,
295
, pp.
778
786
.
41.
Luo
,
W. B.
, and
Zheng
,
B. L.
,
2017
, “
Improved Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Material by Double-Layer Coating With Graphene Oxide and V2O5 for Lithium-Ion Batteries
,”
Appl. Surf. Sci.
,
404
, pp.
310
317
.
42.
Liu
,
H.
,
Kong
,
L.-B.
,
Zhang
,
P.
,
Du
,
J.
,
Li
,
X.-M.
,
Luo
,
Y.-C.
, and
Kang
,
L.
,
2014
, “
A Facile Hydrothermal Method to Prepare LiFePO4/C Submicron Rod With Core–Shell Structure
,”
Ionics
,
20
(
1
), pp.
15
21
.
43.
Guo
,
W. C.
,
Shen
,
F.
,
Liu
,
J. W.
,
Zhang
,
Q. Q.
,
Guo
,
H.
,
Yin
,
Y. T.
,
Gao
,
J.
,
Sun
,
Z. T.
,
Han
,
X. G.
, and
Hu
,
Y. S.
,
2021
, “
In-Situ Optical Observation of Li Growth in Garnet-Type Solid State Electrolyte
,”
Energy Storage Mater.
,
41
, pp.
791
797
.
44.
Wilkinson
,
D. P.
,
Blom
,
H.
,
Brandt
,
K.
, and
Wainwright
,
D.
,
1991
, “
Effects of Physical Constraints on Li Cyclability
,”
J. Power Sources
,
36
(
4
), pp.
517
527
.
45.
Zhang
,
X.
,
Wang
,
Q. J.
,
Harrison
,
K. L.
,
Jungjohann
,
K.
,
Boyce
,
B. L.
,
Roberts
,
S. A.
,
Attia
,
P. M.
, and
Harris
,
S. J.
,
2019
, “
Rethinking How External Pressure Can Suppress Dendrites in Lithium Metal Batteries
,”
J. Electrochem. Soc.
,
166
(
15
), pp.
A3639
A3652
.
46.
Liu
,
Y. D.
,
Liu
,
Q.
,
Xin
,
L.
,
Liu
,
Y. Z.
,
Yang
,
F.
,
Stach
,
E. A.
, and
Xie
,
J.
,
2017
, “
Making Li-Metal Electrodes Rechargeable by Controlling the Dendrite Growth Direction
,”
Nat. Energy
,
2
(
7
), p.
17083
.
47.
Ding
,
F.
,
Xu
,
W.
,
Graff
,
G. L.
,
Zhang
,
J.
,
Sushko
,
M. L.
,
Chen
,
X. L.
,
Shao
,
Y. Y.
,
Engelhard
,
M. H.
,
Nie
,
Z. M.
, and
Xiao
,
J.
,
2013
, “
Dendrite-Free Lithium Deposition Via Self-Healing Electrostatic Shield Mechanism
,”
J. Am. Chem. Soc.
,
135
(
11
), pp.
4450
4456
.
48.
Liu
,
F.
,
Xu
,
R.
,
Wu
,
Y. C.
,
Boyle
,
D. T.
,
Yang
,
A. K.
,
Xu
,
J. W.
,
Zhu
,
Y. Y.
, et al
,
2021
, “
Dynamic Spatial Progression of Isolated Lithium During Battery Operations
,”
Nature
,
600
(
7890
), pp.
659
663
.
49.
Chen
,
K.-H.
,
Wood
,
K. N.
,
Kazyak
,
E.
,
LePage
,
W. S.
,
Davis
,
A. L.
,
Sanchez
,
A. J.
, and
Dasgupta
,
N. P.
,
2017
, “
Dead Lithium: Mass Transport Effects on Voltage, Capacity, and Failure of Lithium Metal Anodes
,”
J. Mater. Chem. A
,
5
(
23
), pp.
11671
11681
.
50.
Bai
,
P.
,
Li
,
J.
,
Brushett
,
F. R.
, and
Bazant
,
M. Z.
,
2016
, “
Transition of Lithium Growth Mechanisms in Liquid Electrolytes
,”
Energy Environ. Sci.
,
9
(
10
), pp.
3221
3229
.
51.
Zhu
,
R. D.
,
Feng
,
J. M.
, and
Guo
,
Z. S.
,
2019
, “
In Situ Observation of Dendrite Behavior of Electrode in Half and Full Cells
,”
J. Electrochem. Soc.
,
166
(
6
), pp.
A1107
A1113
.
52.
Lin
,
X. K.
,
Park
,
J.
,
Liu
,
L.
,
Lee
,
Y.
,
Sastry
,
A. M.
, and
Lu
,
W.
,
2013
, “
A Comprehensive Capacity Fade Model and Analysis for Li-Ion Batteries
,”
J. Electrochem. Soc.
,
160
(
10
), pp.
A1701
A1710
.
You do not currently have access to this content.