Abstract

An optimized electrode is the main requirement for energy-based applications such as supercapacitors. In this work, a ternary composite made up of graphene oxide (GO), polyaniline (PANI), and zinc oxide (ZnO), as an electrode material for supercapacitors was discussed with its structural and electrochemical properties. To attain this: (i) modified Hummers’ method, (ii) in-situ polymerization method, and (iii) hydrothermal method were employed. Synergistic effects between these materials provided efficient electrode materials with porous structure and high specific capacitance. The electrochemical properties of the samples were analyzed by cyclic voltammetry, galvanostatic charge and discharge measurements, and electrochemical impedance spectroscopy in a 6 M KOH electrolyte. The ternary composite exhibited the highest specific capacitance of 278 F g−1 at 1 A g−1.

References

1.
Huang
,
C.
,
Hao
,
C.
,
Zheng
,
W.
,
Zhou
,
S.
,
Yang
,
L.
,
Wang
,
X.
,
Jiang
,
C.
, and
Zhu
,
L.
,
2020
, “
Synthesis of Polyaniline/Nickel Oxide/Sulfonated Graphene Ternary Composite for All-Solid-State Asymmetric Supercapacitor
,”
Appl. Surf. Sci.
,
505
(
1
), p.
144589
.
2.
Kandasamy
,
S. K.
, and
Kandasamy
,
K.
,
2018
, “
Recent Advances in Electrochemical Performances of Graphene Composite (Graphene-Polyaniline/Polypyrrole/Activated Carbon/Carbon Nanotube) Electrode Materials for Supercapacitor: A Review
,”
J. Inorg. Organomet. Polym. Mater.
,
28
(
3
), pp.
559
584
.
3.
Mezgebe
,
M. M.
,
Yan
,
Z.
,
Wei
,
G.
,
Gong
,
S.
,
Zhang
,
F.
,
Guang
,
S.
, and
Xu
,
H.
,
2017
, “
3D Graphene-Fe3O4-Polyaniline, a Novel Ternary Composite for Supercapacitor Electrodes With Improved Electrochemical Properties
,”
Mater. Today Energy
,
5
(
1
), pp.
164
172
.
4.
Kandasamy
,
S. K.
, and
Kandasamy
,
K.
,
2019
, “
Graphene–Polyaniline Nanocomposite Treated With Microwave As a New Supercapacitor Electrode and Its Structural, Electrochemical Properties Graphene–Polyaniline Nanocomposite Treated With Microwave As a New Supercapacitor Electrode and Its Structural, Electrochemical Properties
,”
J. New Mater. Electrochem. Syst.
,
22
(
3
), pp.
125
131
.
5.
Mary
,
A. J. C.
,
Sathish
,
C. I.
,
Vinu
,
A.
, and
Bose
,
A. C.
,
2020
, “
Electrochemical Performance of rGO/NiCo2O4 at ZnCo2O4 Ternary Composite Material and the Fabrication of an All-Solid-State Supercapacitor Device
,”
Energy Fuels
,
34
(
8
), pp.
10131
10141
.
6.
Kumar
,
K. S.
,
Chandrasekaran
,
A.
,
Kannan
,
K.
, and
Murugesan
,
G.
,
2018
, “
Effects of Microwave Annealing of Graphene and Its Impact on Structural, Electrochemical Performance for Energy Storage
,”
2018 International Conference on Intelligent Computing and Communication for Smart World (I2C2SW)
,
Erode, India
,
Dec. 14–15
, IEEE, pp.
241
243
.
7.
Thakur
,
A. K.
,
Deshmukh
,
A. B.
,
Choudhary
,
R. B.
,
Karbhal
,
I.
,
Majumder
,
M.
, and
Shelke
,
M. V.
,
2017
, “
Facile Synthesis and Electrochemical Evaluation of PANI/CNT/MoS2 Ternary Composite As an Electrode Material for High Performance Supercapacitor
,”
Mater. Sci. Eng. B
,
223
(
1
), pp.
24
34
.
8.
Dhandapani
,
R.
, and
Kandasamy
,
S. K.
,
2014
, “
Fabrication of Polymer Based Schottky Diode Using PANI/Ag Nano Composite
,”
Int. J. Res. Eng. Technol.
,
3
(
7
), pp.
214
218
.
9.
Kaladevi
,
G.
,
Wilson
,
P.
, and
Pandian
,
K.
,
2020
, “
Silver Nanoparticle–Decorated PANI/Reduced Graphene Oxide for Sensing of Hydrazine in Water and Inhibition Studies on Microorganism
,”
Ionics
,
26
(
6
), pp.
3123
3133
.
10.
Sivalingam
,
D.
,
Elangovan
,
H.
,
Subramanian
,
M.
,
Kandasamy
,
S. K.
, and
Govindasamy
,
M.
,
2013
, “
Synthesis and Characterization of PANI/Ferric Chloride Composite for Fabrication of Electrodes in Supercapacitor
,”
Adv. Mater. Res.
,
768
(
1
), pp.
334
337
. www.scientific.net/AMR.768.334
11.
Kalambate
,
P. K.
,
Rawool
,
C. R.
,
Karna
,
S. P.
, and
Srivastava
,
A. K.
,
2019
, “
Nitrogen-Doped Graphene/Palladium Nanoparticles/Porous Polyaniline Ternary Composite As an Efficient Electrode Material for High Performance Supercapacitor
,”
Mater. Sci. Energy Technol.
,
2
(
2
), pp.
246
257
.
12.
Chandrasekaran
,
A.
,
Senthil Kumar
,
K.
,
Keerthika
,
G.
,
Kirubasri
,
S.
, and
Krishna Prasath
,
E.
,
2021
, “
Hierarchical Structure of Graphene Oxide/Polyaniline Composite Flexible Supercapacitor
,”
AIP Conf. Proc.
,
2387
(
1
), p.
090003
.
13.
Dong
,
D.
, and
Wang
,
X.
,
2019
, “
Ternary Composite MnO2 at MoS2/Polypyrrole From In-Situ Synthesis for Binder-Free and Flexible Supercapacitor
,”
J. Bioresour. Bioprod.
,
4
(
4
), pp.
242
250
.
14.
Zhou
,
H.
,
Zhai
,
H. J.
, and
Zhi
,
X.
,
2018
, “
Enhanced Electrochemical Performances of Polypyrrole/Carboxyl Graphene/Carbon Nanotubes Ternary Composite for Supercapacitors
,”
Electrochim. Acta
,
290
(
1
), pp.
1
11
.
15.
Kandasamy
,
S. K.
, and
Kandasamy
,
K.
,
2019
, “
Structural and Electrochemical Analysis of Microwave-Assisted Synthesis of Graphene/Polypyrrole Nanocomposite for Supercapacitor
,”
Int. J. Electrochem. Sci.
,
14
(
5
), pp.
4718
4729
.
16.
Alcaraz-Espinoza
,
J. J.
, and
de Oliveira
,
H. P.
,
2018
, “
Flexible Supercapacitors Based on a Ternary Composite of Polyaniline/Polypyrrole/Graphite on Gold Coated Sandpaper
,”
Electrochim. Acta
,
274
(
1
), pp.
200
207
.
17.
Lu
,
P.
,
Halvorsen
,
E.
,
Ohlckers
,
P.
,
Müller
,
L.
,
Leopold
,
S.
,
Hoffmann
,
M.
,
Grigoras
,
K.
,
Ahopelto
,
J.
,
Prunnila
,
M.
, and
Chen
,
X.
,
2017
, “
Ternary Composite Si/TiN/MnO2 Taper Nanorod Array for On-Chip Supercapacitor
,”
Electrochim. Acta
,
248
(
1
), pp.
397
408
.
18.
Azman
,
N. H. N.
,
Mamat@ Mat Nazir
,
M. S.
,
Ngee
,
L. H.
, and
Sulaiman
,
Y.
,
2018
, “
Graphene Based Ternary Composites for Supercapacitors
,”
Int. J. Energy Res.
,
42
(
6
), pp.
2104
2116
.
19.
Xu
,
Z.
,
Zhang
,
Z.
,
Yin
,
H.
,
Hou
,
S.
,
Lin
,
H.
,
Zhou
,
J.
, and
Zhuo
,
S.
,
2020
, “
Investigation on the Role of Different Conductive Polymers in Supercapacitors Based on a Zinc Sulfide/Reduced Graphene Oxide/Conductive Polymer Ternary Composite Electrode
,”
RSC Adv.
,
10
(
6
), pp.
3122
3129
.
20.
Ishaq
,
S.
,
Moussa
,
M.
,
Kanwal
,
F.
,
Ehsan
,
M.
,
Saleem
,
M.
,
Van
,
T. N.
, and
Losic
,
D.
,
2019
, “
Facile Synthesis of Ternary Graphene Nanocomposites With Doped Metal Oxide and Conductive Polymers As Electrode Materials for High Performance Supercapacitors
,”
Sci. Rep.
,
9
(
1
), pp.
1
11
.
21.
Alves
,
A. P. P.
,
Koizumi
,
R.
,
Samanta
,
A.
,
Machado
,
L. D.
,
Singh
,
A. K.
,
Galvao
,
D. S.
,
Silva
,
G. G.
,
Tiwary
,
C. S.
, and
Ajayan
,
P. M.
,
2017
, “
One-Step Electrodeposited 3D-Ternary Composite of Zirconia Nanoparticles, rGO and Polypyrrole With Enhanced Supercapacitor Performance
,”
Nano Energy
,
31
(
1
), pp.
225
232
.
22.
Kandasamy
,
S. K.
,
Arumugam
,
C.
,
Vadivel
,
L.
,
Ganapathi
,
M.
,
Nattudurai
,
N.
, and
Kandasamy
,
K.
,
2020
, “
Synthesis of Chemically Modified Activated Carbon for Supercapacitor Electrode Derived From Fibers of Musa Paradisiaca
,”
Int. J. Emerg. Technol.
,
11
(
3
), pp.
565
569
.
23.
Devendran
,
M.
,
Kandasamy
,
S. K.
,
Palanisamy
,
S.
,
Selvaraj
,
S.
,
Vetrivel
,
R.
,
Selvarajan
,
R.
,
Govindasamy
,
M.
, and
Kandasamy
,
K.
,
2020
, “
Preparation of Chemically Modified Porous Carbon Networks Derived From Citrus Sinensis Flavedos As Electrode Material for Supercapacitor
,”
Int. J. Electrochem. Sci.
,
15
(
4
), pp.
4379
4387
.
24.
Kandasamy
,
S. K.
,
Subramanian
,
B.
,
Krishnamoorthy
,
H.
, and
Arumugam
,
C.
,
2021
, “
Chemically Treated Activated Carbon for Supercapacitor Electrode Derived From Starch of Solanum Tuberosum
,”
J. New Mater. Electrochem. Syst.
,
24
(
2
), pp.
78
83
.
25.
Palanisamy
,
S.
,
Kandasamy
,
S. K.
,
Thangmuthu
,
S.
,
Selvarasu
,
D. K.
,
Panchanathan
,
M.
,
Ramanai
,
P. V.
, and
Gevert
,
B. S.
,
2021
, “
Synthesis of Activated Carbon From Black Liquor for the Application of Supercapacitor
,”
J. Mater. Sci.: Mater. Electron.
,
32
(
20
), pp.
25175
25187
.
26.
Kandasamy
,
S. K.
,
Arumugam
,
C.
,
Sajitha
,
A. S.
,
Rao
,
S. P.
,
Selvaraj
,
S.
,
Vetrivel
,
R.
,
Selvarajan
,
R.
, et al
,
2021
, “
Paradisiaca/Solanum Tuberosum Biowaste Composited With Graphene Oxide for Flexible Supercapacitor
,”
J. New Mater. Electrochem. Syst.
,
24
(
1
), pp.
21
28
.
27.
Nirmaladevi
,
S.
,
Boopathiraja
,
R.
,
Kandasamy
,
S. K.
,
Sathishkumar
,
S.
, and
Parthibavarman
,
M.
,
2021
, “
Wood Based Biochar Supported MnO2 Nanorods for High Energy Asymmetric Supercapacitor Applications
,”
Surf. Interfaces
,
27
(
1
), p.
101548
.
28.
Tseng
,
L. H.
,
Hsiao
,
C. H.
,
Nguyen
,
D. D.
,
Hsieh
,
P. Y.
,
Lee
,
C. Y.
, and
Tai
,
N. H.
,
2018
, “
Activated Carbon Sandwiched Manganese Dioxide/Graphene Ternary Composites for Supercapacitor Electrodes
,”
Electrochim. Acta
,
266
(
1
), pp.
284
292
.
29.
Sowmiya
,
G.
, and
Velraj
,
G.
,
2020
, “
Designing a Ternary Composite of PPy-PT/TiO2 Using TiO2, and Multipart-Conducting Polymers for Supercapacitor Application
,”
J. Mater. Sci.: Mater. Electron.
,
31
(
17
), pp.
14287
14294
.
30.
Moyseowicz
,
A.
,
Śliwak
,
A.
,
Miniach
,
E.
, and
Gryglewicz
,
G.
,
2017
, “
Polypyrrole/Iron Oxide/Reduced Graphene Oxide Ternary Composite As a Binderless Electrode Material With High Cyclic Stability for Supercapacitors
,”
Compos. B: Eng.
,
109
(
1
), pp.
23
29
.
31.
Soysal
,
F.
,
Çıplak
,
Z.
,
Getiren
,
B.
,
Gökalp
,
C.
, and
Yıldız
,
N.
,
2020
, “
Synthesis and Characterization of Reduced Graphene Oxide-Iron Oxide-Polyaniline Ternary Nanocomposite and Determination of Its Photothermal Properties
,”
Mater. Res. Bull.
,
124
(
1
), p.
110763
.
32.
Jeyaranjan
,
A.
,
Sakthivel
,
T. S.
,
Neal
,
C. J.
, and
Seal
,
S.
,
2019
, “
Scalable Ternary Hierarchical Microspheres Composed of PANI/rGO/CeO2 for High Performance Supercapacitor Applications
,”
Carbon
,
151
(
1
), pp.
192
202
.
33.
Chandrasekaran
,
A.
,
Senthil Kumar
,
K.
,
Sabitha
,
R.
,
Sangavi
,
M.
, and
Ruthra Pranesh
,
T.
,
2021
, “
Hierarchical Structure of Graphene Oxide/MnO2 Electrodes for Supercapacitor
,”
AIP Conf. Proc.
,
2387
(
1
), p.
090004
.
34.
Cheng
,
T.
,
Yu
,
B.
,
Cao
,
L.
,
Tan
,
H.
,
Li
,
X.
,
Zheng
,
X.
,
Li
,
W.
,
Ren
,
Z.
, and
Bai
,
J.
,
2017
, “
Synthesis and Loading-Dependent Characteristics of Nitrogen-Doped Graphene Foam/Carbon Nanotube/Manganese Oxide Ternary Composite Electrodes for High Performance Supercapacitors
,”
J. Colloid Interface Sci.
,
501
(
1
), pp.
1
10
.
35.
Saranya
,
M.
,
Ramachandran
,
R.
, and
Wang
,
F.
,
2016
, “
Graphene-Zinc Oxide (G-ZnO) Nanocomposite for Electrochemical Supercapacitor Applications
,”
J. Sci.: Adv. Mater. Dev.
,
1
(
4
), pp.
454
460
.
36.
Kandasamy
,
S. K.
,
Arumugam
,
C.
,
Vadivel
,
L.
,
Kandasamy
,
S.
, and
Karuppaiah
,
D.
,
2021
, “
Fabrication of ZnO-Carbonized Cotton Yarn Derived Hierarchical Porous Active Carbon Flexible Electrodes
,”
AIP Conf. Proc.
,
2387
(
1
), p.
090005
.
37.
Ghanbari
,
K.
, and
Moloudi
,
M.
,
2016
, “
Flower-Like ZnO Decorated Polyaniline/Reduced Graphene Oxide Nanocomposites for Simultaneous Determination of Dopamine and Uric Acid
,”
Anal. Biochem.
,
512
(
1
), pp.
91
102
.
38.
Bera
,
S.
,
Naskar
,
A.
,
Pal
,
M.
, and
Jana
,
S.
,
2016
, “
ZnO–Graphene–Polyaniline Nanoflowers: Solution Synthesis, Formation Mechanism and Electrochemical Activity
,”
RSC Adv.
,
6
(
47
), pp.
40854
40857
.
39.
Palsaniya
,
S.
,
Nemade
,
H. B.
, and
Dasmahapatra
,
A. K.
,
2021
, “
Hierarchical PANI–RGO–ZnO Ternary Nanocomposites for Symmetric Tandem Supercapacitor
,”
J. Phys. Chem. Solids
,
154
(
1
), p.
110081
.
40.
Qin
,
Z.
,
Li
,
Z. J.
,
Yun
,
G. Q.
,
Shi
,
K.
,
Li
,
K.
, and
Yang
,
B. C.
,
2014
, “
ZnO Nanorods Inserted Graphene Sheets With Improved Supercapacitive Performance
,”
Appl. Surf. Sci.
,
292
(
1
), pp.
544
550
.
41.
Guo
,
Y.
,
Chang
,
B.
,
Wen
,
T.
,
Zhao
,
C.
,
Yin
,
H.
,
Zhou
,
Y.
,
Wang
,
Y.
,
Yang
,
B.
, and
Zhang
,
S.
,
2016
, “
One-Pot Synthesis of Graphene/Zinc Oxide by Microwave Irradiation With Enhanced Supercapacitor Performance
,”
RSC Adv.
,
6
(
23
), pp.
19394
19403
.
42.
Fan
,
L. Q.
,
Liu
,
G. J.
,
Zhao
,
J. C.
,
Wu
,
J. H.
,
Zhong
,
J.
,
Lin
,
J. M.
,
Huo
,
J. H.
, and
Liu
,
L.
,
2014
, “
Facile One-Step Hydrothermal Syntheses and Supercapacitive Performances of Reduced Graphene Oxide/MnO2 Composites
,”
Compos. Sci. Technol.
,
103
(
1
), pp.
113
118
.
43.
Guo
,
W. H.
,
Liu
,
T. J.
,
Jiang
,
P.
, and
Zhang
,
Z. J.
,
2015
, “
Free-Standing Porous Manganese Dioxide/Graphene Composite Films for High Performance Supercapacitors
,”
J. Colloid Interface Sci.
,
437
(
1
), pp.
304
310
.
You do not currently have access to this content.