Abstract

Currently, most of the anode materials for lithium-ion batteries (LIBs) suffer from the problems of capacity degradation and reduction of cycle life due to volume expansion and polarization. Here we have successfully prepared helical carbon nanofibers (HCNFs) using a simple ethanol flame method (EFM) and tested their electrochemical performance as anode materials for LIBs. The results show that HCNFs possess high reversible capacity (specific capacity of 622.9 mAh/g at a current density of 50 mA/g), good rate performance, and excellent cycling stability (specific capacity of 395.6 mAh/g after 100 cycles at a current density of 200 mA/g, Coulombic efficiency of over 98%, and capacity retention of 94.41%). HCNFs possess a unique helical structure, which provides a strong support space for the intercalation/deintercalation in LIBs, and effectively alleviate the volume expansion and polarization of the anode material. Additionally, HCNFs exhibit excellent electrical conductivity and chemical stability. The facile preparation route and superior properties of HCNFs make them potential anode materials for LIBs.

References

1.
Wang
,
X.
,
Huang
,
R.
,
Niu
,
S.
,
Xu
,
L.
,
Zhang
,
Q.
,
Amini
,
A.
, and
Cheng
,
C.
,
2021
, “
Research Progress on Graphene-Based Materials for High-Performance Lithium-Metal Batteries
,”
New Carbon Mater.
,
36
(
4
), pp.
711
728
.
2.
Kim
,
T.
,
Song
,
W.
,
Son
,
D.
,
Ono
,
L.
, and
Qi
,
Y.
,
2019
, “
Lithium-Ion Batteries: Outlook on Present, Future, and Hybridized Technologies
,”
J. Mater. Chem. A
,
7
(
7
), pp.
2942
2964
.
3.
Schipper
,
F.
, and
Aurbach
,
D.
,
2016
, “
A Brief Review: Past, Present and Future of Lithium Ion Batteries
,”
Russ. J. Electrochem.
,
52
(
12
), pp.
1095
1121
.
4.
Zhang
,
W.
,
Du
,
R.
,
Zhou
,
C.
,
Pu
,
S.
,
Han
,
B.
,
Xia
,
K.
,
Gao
,
Q.
, and
Wu
,
J.
,
2019
, “
Ultrafine SnO2 Aggregates in Interior of Porous Carbon Nanotubes as High-Performance Anode Materials of Lithium-Ion Batteries
,”
Mater. Today Energy
,
12
, pp.
303
310
.
5.
Li
,
X.
,
Cai
,
X.
, and
Li
,
H.
,
2021
, “
Carbon-Coated CaSnO3 Nanofibers as Anode Materials for High-Performance Lithium-Ion Batteries
,”
Chinese J. Inorg. Chem.
,
37
(
4
), pp.
700
708
.
6.
Shi
,
L.
,
Chen
,
Y.
,
Chen
,
G.
,
Wang
,
Y.
,
Chen
,
X.
, and
Song
,
H.
,
2017
, “
Fabrication of Hierarchical Porous Carbon Microspheres Using Porous Layered Double Oxide Templates for High-Performance Lithium Ion Batteries
,”
Carbon
,
123
, pp.
186
192
.
7.
Moon
,
J. H.
,
Oh
,
M. J.
,
Nam
,
M. G.
,
Lee
,
J. H.
,
Min
,
G. D.
,
Park
,
J.
,
Kim
,
W.-J.
, and
Yoo
,
P. J.
,
2019
, “
Carbonization/Oxidation-Mediated Synthesis of MOF-Derived Hollow Nanocages of ZnO/N-Doped Carbon Interwoven by Carbon Nanotubes for Lithium-Ion Battery Anodes
,”
Dalton T.
,
48
(
31
), pp.
11941
11950
.
8.
Lin
,
N.
,
Han
,
Y.
,
Zhou
,
J.
,
Zhang
,
K.
,
Xu
,
T.
,
Zhu
,
Y.
, and
Qian
,
Y.
,
2015
, “
A Low Temperature Molten Salt Process for Aluminothermic Reduction of Silicon Oxides to Crystalline Si for Li-Ion Batteries
,”
Energy Environ. Sci.
,
8
(
11
), pp.
3187
3191
.
9.
Qing
,
T.
,
Liu
,
N.
,
Jin
,
Y.
,
Chen
,
G.
, and
Min
,
D.
,
2021
, “
Helical Carbon Nanofibers Modified With Fe2O3 as a High Performance Anode Material for Lithium-Ion Batteries
,”
Dalton Trans.
,
50
(
17
), pp.
5819
5827
.
10.
Zuo
,
X.
,
Xia
,
Y.
,
Ji
,
Q.
,
Gao
,
X.
,
Yin
,
S.
,
Wang
,
M.
,
Wang
,
X.
,
Qiu
,
B.
,
Wei
,
A.
, and
Sun
,
Z.
,
2017
, “
Self-Templating Construction of 3D Hierarchical Macro-/Mesoporous Silicon From 0D Silica Nanoparticles
,”
ACS Nano
,
11
(
1
), pp.
889
899
.
11.
Raghubanshi
,
H.
,
Dikio
,
E. D.
, and
Naidoo
,
E. B.
,
2016
, “
The Properties and Applications of Helical Carbon Fibers and Related Materials: A Review
,”
J. Ind. Eng. Chem.
,
44
, pp.
23
42
.
12.
Dai
,
Z.
,
Cai
,
J.
,
Luo
,
S.
, and
Nie
,
S.
,
2017
, “
Preparation and Electrochemical Performance of Helical Carbon Nanofibers
,”
Carbon Tech.
,
36
(
2
), pp.
26
29
.
13.
Gautam
,
R. K.
, and
Kumar
,
A.
,
2022
, “
A Review of Bipolar Plate Materials and Flow Field Designs in the All-Vanadium Redox Flow Battery
,”
J. Energy Storage
,
48
, p.
104003
.
14.
Gautam
,
R. K.
,
Kapoor
,
M.
, and
Verma
,
A.
,
2020
, “
Tactical Surface Modification of a 3D Graphite Felt as an Electrode of Vanadium Redox Flow Batteries With Enhanced Electrolyte Utilization and Fast Reaction Kinetics
,”
Energy Fuels
,
34
(
4
), pp.
5060
5071
.
15.
Shao
,
C.
,
Zhang
,
F.
,
Li
,
B.
,
Li
,
Y.
,
Wu
,
Q.
, and
Yang
,
Y.
,
2017
, “
Helical Mesoporous Carbon Nanoribbons as High Performance Lithium Ion Battery Anode Materials
,”
J. Taiwan Inst. Chem. Eng.
,
80
, pp.
434
438
.
16.
Chen
,
L.
,
Wang
,
C.
,
Miao
,
Y.
, and
Chen
,
G.
,
2014
, “
Low Temperature Synthesis of Helical Carbon Nanotubes by Chemical Vapour Deposition
,”
New Chem. Mater.
,
42
(
11
), pp.
107
109
.
17.
Jin
,
Y.
,
Ren
,
J.
,
Chen
,
J.
,
Dai
,
Z.
,
Li
,
B.
, and
Zhou
,
X.
,
2018
, “
Controllable Preparation of Helical Carbon Nanofibers by CCVD Method and Their Characterization
,”
Mater. Res. Express
,
5
(
1
), p.
015601
.
18.
Shaikjee
,
A.
, and
Coville
,
N. J.
,
2012
, “
The Synthesis, Properties and Uses of Carbon Materials With Helical Morphology
,”
J. Adv. Res.
,
3
(
3
), pp.
195
223
.
19.
Liu
,
Y.
,
Fu
,
Q.
, and
Pan
,
C.
,
2005
, “
Synthesis of Carbon Nanotubes on Pulse Plated Ni Nanocrystalline Substrate in Ethanol Flames
,”
Carbon
,
43
(
11
), pp.
2264
2271
.
20.
Hu
,
W.
, and
Lin
,
T.
,
2016
, “
Ethanol Flame Synthesis of Carbon Nanotubes in Deficient Oxygen Environments
,”
Nanotechnology
,
27
(
16
), p.
165602
.
21.
Zheng
,
L.
,
Bao
,
C.
,
Lei
,
S.
,
Wang
,
J.
,
Li
,
F.
,
Sun
,
P.
,
Huang
,
N.
,
Fang
,
L.
, and
Sun
,
X.
,
2018
, “
In Situ Growing CNTs Encapsulating Nickel Compounds on Ni Foils With Ethanol Flame Method as Superior Counter Electrodes of Dye-Sensitized Solar Cells
,”
Carbon
,
133
, pp.
423
434
.
22.
Pan
,
C.
,
Liu
,
Y.
,
Cao
,
F.
,
Wang
,
J.
, and
Ren
,
Y.
,
2004
, “
Synthesis and Growth Mechanism of Carbon Nanotubes and Nanofibers From Ethanol Flames
,”
Micron
,
35
(
6
), pp.
461
468
.
23.
Khosravi
,
M.
, and
Amini
,
M. K.
,
2010
, “
Flame Synthesis of Carbon Nanofibers on Carbon Paper: Physicochemical Characterization and Application as Catalyst Support for Methanol Oxidation
,”
Carbon
,
48
(
11
), pp.
3131
3138
.
24.
He
,
H.
,
Zhou
,
M.
, and
Dai
,
T.
,
2020
, “
Effect of Graphite Pore Structure on the Multiplicative Performance of Lithium-Ion Batteries
,”
Battery Bimon.
,
50
(
6
), pp.
569
573
.
25.
Fu
,
Q.
,
Zhang
,
W.
,
Zhang
,
S.
,
He
,
X.
,
Chen
,
C.
, and
Chen
,
J.
,
2020
, “
Preparation of Helical Carbon Nanofibres by Flame Method and Their Hydrophilic Modification
,”
Surf. Technol.
,
49
(
6
), pp.
124
131
.
26.
Wang
,
H.
,
Tang
,
C.
,
Wang
,
B.
,
Li
,
B.
,
Cui
,
X.
, and
Zhang
,
Q.
,
2018
, “
Defect-Rich Carbon Fiber Electrocatalysts With Porous Graphene Skin for Flexible Solid-State Zinc–Air Batteries
,”
Energy Storage Mater.
,
15
, pp.
124
130
.
27.
Zhang
,
Y.
,
Yan
,
W.
, and
Luo
,
R.
,
2016
, “
Preparation of Nano Spherical Carbon by Catalyst-Free Chemical Vapour Deposition and Its Mechanism
,”
New Carbon Mater.
,
31
(
5
), pp.
467
474
.
28.
Wu
,
L.
,
Li
,
Y.
,
Fu
,
Z.
, and
Su
,
B.
,
2020
, “
Hierarchically Structured Porous Materials: Synthesis Strategies and Applications in Energy Storage
,”
Natl. Sci. Rev.
,
7
(
11
), pp.
1667
1701
.
29.
Yan
,
J.
,
Miao
,
L.
,
Duan
,
H.
,
Zhu
,
D.
, and
Liu
,
M.
,
2020
, “
Core-Shell Hierarchical Porous Carbon Spheres With N/O Doping for Efficient Energy Storage
,”
Electrochim. Acta
,
358
, p.
136899
.
30.
Gautam
,
R. K.
, and
Verma
,
A.
,
2020
, “
Uniquely Designed Surface Nanocracks for Highly Efficient and Ultra-Stable Graphite Felt Electrode for Vanadium Redox Flow Battery
,”
Mater. Chem. Phys.
,
251
, p.
123178
.
31.
Xiong
,
Z.
,
Yun
,
Y. S.
, and
Jin
,
H.
,
2013
, “
Applications of Carbon Nanotubes for Lithium Ion Battery Anodes
,”
Materials
,
6
(
3
), pp.
1138
1158
.
32.
Shao
,
J.
,
Ren
,
Y.
,
Li
,
G.
,
Huang
,
X.
,
Zhou
,
G.
, and
Qu
,
M.
,
2011
, “
Carbon Coated Helical Carbon Nanotubes Used as Anode Materials of Li-Ion Battery
,”
J. Inorg. Mater.
,
26
(
6
), pp.
631
637
.
33.
Shi
,
L.
,
Chen
,
Y.
,
Song
,
H.
,
Li
,
A.
,
Chen
,
X.
,
Zhou
,
J.
, and
Ma
,
Z.
,
2017
, “
Preparation and Lithium-Storage Performance of a Novel Hierarchical Porous Carbon From Sucrose Using Mg-Al Layered Double Hydroxides as Template
,”
Electrochim. Acta
,
231
, pp.
153
161
.
34.
Nie
,
K.
,
Guo
,
Z.
, and
Wang
,
Q.
,
2018
, “
Cyclic Voltammetry and Analytical Methods in the Study of Lithium Batteries
,”
Energy Storage Sci. Technol.
,
7
(
3
), pp.
539
553
.
35.
Peng
,
C.
,
Liao
,
M. D.
,
Lv
,
X. L.
,
Chen
,
L.
,
Hou
,
S. P.
,
Min
,
D.
,
Chen
,
J.
,
Wang
,
H.
, and
Lin
,
J.
,
2020
, “
Large-Scale Synthesis of Highly Structural-Connecting Carbon Nanospheres as an Anodes Material for Lithium-Ion Batteries With High-Rate Capacity
,” J.
Adv. Chem. Eng.
,
2
, p.
100014
.
36.
Zhou
,
G.
,
Wang
,
D.
,
Li
,
F.
,
Zhang
,
L.
,
Li
,
N.
,
Wu
,
Z.
,
Wen
,
L.
,
Lu
,
G. Q.
, and
Cheng
,
H.
,
2010
, “
Graphene-Wrapped Fe3O4 Anode Material With Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries
,”
Chem. Mater.
,
22
(
18
), pp.
5306
5313
.
37.
Dong
,
Y.
,
Yang
,
S.
,
Zhang
,
Z.
,
Lee
,
J.
, and
Zapien
,
J. A.
,
2018
, “
Enhanced Electrochemical Performance of Lithium Ion Batteries Using Sb2S3 Nanorods Wrapped in Graphene Nanosheets as Anode Materials
,”
Nanoscale
,
10
(
7
), pp.
3159
3165
.
38.
Li
,
L.
,
Zhang
,
J.
,
Zou
,
Y.
,
Jiang
,
W.
,
Lei
,
W.
, and
Ma
,
Z.
,
2019
, “
High-Rate and Long-Term Cycle Stability of Lithium-Ion Batteries Enabled by Boron-Doping TiO2 Nanofiber Anodes
,”
J. Electroanal. Chem.
,
833
, pp.
573
579
.
39.
Ying
,
Z.
,
Wang
,
J.
, and
Cao
,
M.
,
2021
, “
Study of the Decay Mechanism of Graphite Anode Materials for Lithium-Ion Batteries
,”
Adv. New Renew. Energy
,
9
(
2
), pp.
158
168
.
40.
Hu
,
Y.
,
Li
,
X.
,
Wang
,
J.
,
Li
,
R.
, and
Sun
,
X.
,
2013
, “
Free-Standing Graphene–Carbon Nanotube Hybrid Papers Used as Current Collector and Binder Free Anodes for Lithium Ion Batteries
,”
J. Power Sources
,
237
, pp.
41
46
.
41.
Kapoor
,
M.
,
Gautam
,
R. K.
,
Ramani
,
V. K.
, and
Verma
,
A.
,
2020
, “
Predicting Operational Capacity of Redox Flow Battery Using a Generalized Empirical Correlation Derived From Dimensional Analysis
,”
Chem. Eng. J.
,
379
, p.
122300
.
42.
Oktaviano
,
H. S.
,
Yamada
,
K.
, and
Waki
,
K.
,
2012
, “
Nano-Drilled Multiwalled Carbon Nanotubes: Characterizations and Application for LIB Anode Materials
,”
J. Mater. Chem.
,
22
(
48
), pp.
25167
25173
.
You do not currently have access to this content.