Abstract

The mechanism models of solid oxide fuel cell–gas turbine (SOFC-GT) systems are very useful to analyze the thermodynamic performance details, including the internal complex transfers of mass, heat, and electrochemical processes. However, several physical-property parameters in the mechanism model are unmeasurable and difficult to accurately quantify from the operation data when the inevitable degradation occurs. As a result, it is difficult for the mechanism model to accurately capture the SOFC electrochemical characteristic during the full operating cycle. In this paper, a model evolution method based on hybrid modeling technology is proposed to address this problem. A hybrid modeling framework of a SOFC-GT system is designed by combining a least squares-support vector machine algorithm (LS-SVM) electrochemical model with our previous mechanism model. The electrochemical characteristic of SOFC is easily identified and evolved by re-training the LS-SVM model from operating data, no longer needing a mechanism electrochemical model. The validated full-mechanism model from our previous work is taken to simulate a physical SOFC-GT system to generate the operating data. Various LS-SVM models are trained by different data sets. The comparison results demonstrate that the LS-SVM model trained by large-size data set 3 performs the highest accuracy in predicting the local current density. The maximum absolute error of prediction is only about 1.379 A/m2, and the prediction mean square error of the normalized test data reaches 4.36 × 10−9. Then, the LS-SVM hybrid model is applied to evaluate the thermodynamic performance of a SOFC-GT system. The comparison results between the hybrid model and our previous full-mechanism model show that the hybrid model can accurately predict the SOFC-GT system performance. The maximum error is 1.97% at the design condition and 0.60% at off-design conditions. Therefore, the LS-SVM hybrid model is significant for accurately identifying the real electrochemical characteristic from operation data for a physical SOFC-GT system during the full operation cycle.

References

1.
Choudhary
,
T.
,
2017
, “
Thermodynamic Assessment of Advanced SOFC-Blade Cooled Gas Turbine Hybrid Cycle
,”
Int. J. Hydrogen Energy
,
42
(
15
), pp.
10248
10263
.
2.
Larosa
,
L.
,
Traverso
,
A.
,
Ferrari
,
M. L.
, and
Zaccaria
,
V.
,
2015
, “
Pressurized SOFC Hybrid Systems: Control System Study and Experimental Verification
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
031602
.
3.
Larosa
,
L.
,
Ferrari
,
M. L.
,
Magistri
,
L.
, and
Massardo
,
A. F.
, 2013, “
SOFC/MGT Coupling: Different Options With Standard Boosters
,”
Turbo Expo: Power for Land, Sea, and Air
,
San Antonio, TX
,
June 3–7
,
American Society of Mechanical Engineers
, Paper No. GT2013-94072 p.
V002T07A003
.
4.
Chen
,
J.
,
Li
,
J.
,
Zhou
,
D.
,
Zhang
,
H.
, and
Weng
,
S.
,
2018
, “
Control Strategy Design for a SOFC-GT Hybrid System Equipped With Anode and Cathode Recirculation Ejectors
,”
Appl. Therm. Eng.
,
132
, pp.
67
79
.
5.
Chen
,
J.
,
Chen
,
Y.
,
Zhang
,
H.
, and
Weng
,
S.
,
2018
, “
Effect of Different Operating Strategies for a SOFC-GT Hybrid System Equipped With Anode and Cathode Ejectors
,”
Energy
,
163
, pp.
1
14
.
6.
Rao
,
A. D.
, and
Samuelsen
,
G. S.
,
2002
, “
Analysis Strategies for Tubular Solid Oxide Fuel Cell Based Hybrid Systems
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
503
509
.
7.
Martinez
,
A. S.
,
Brouwer
,
J.
, and
Samuelsen
,
G. S.
,
2012
, “
Feasibility Study for SOFC-GT Hybrid Locomotive Power: Part I: Development of a Dynamic 3.5MW SOFC-GT FORTRAN Model
,”
J. Power Sources
,
213
, pp.
203
217
.
8.
Martinez
,
A. S.
,
Brouwer
,
J.
, and
Samuelsen
,
G. S.
,
2012
, “
Feasibility Study for SOFC-GT Hybrid Locomotive Power Part II. System Packaging and Operating Route Simulation
,”
J. Power Sources
,
213
, pp.
358
374
.
9.
Ferrari
,
M. L.
,
Traverso
,
A.
, and
Massardo
,
A. F.
,
2004
, “
Transient Analysis of Solid Oxide Fuel Cell Hybrids: Part B—Anode Recirculation Model
,”
ASME Turbo Expo 2004
,
Vienna, Austria
,
June 14–17
,
American Society of Mechanical Engineers
, p.
GT2004-53716
.
10.
Magistri
,
L.
,
Ferrari
,
M. L.
,
Traverso
,
A.
,
Costamagna
,
P.
, and
Massardo
,
A. F.
, 2004, “
Transient Analysis of Solid Oxide Fuel Cell Hybrids: Part C— Whole-Cycle Model
,”
Proceedings of ASME Turbo Expo 2004
,
Vienna, Austria
,
June 14–17
,
American Society of Mechanical Engineers
, p.
GT2004-53845
.
11.
Mclarty
,
D.
,
Brouwer
,
J.
, and
Samuelsen
,
S.
,
2014
, “
Fuel Cell–Gas Turbine Hybrid System Design Part II: Dynamics and Control
,”
J. Power Sources
,
254
, pp.
126
136
.
12.
Huang
,
Y.
, and
Turan
,
A.
,
2020
, “
Mechanical Equilibrium Operation Integrated Modelling of Hybrid SOFC–GT Systems: Design Analyses and Off-Design Optimization
,”
Energy
,
208
, p.
118334
.
13.
Huang
,
Y.
, and
Turan
,
A.
,
2021
, “
Mechanical Equilibrium Operation Integrated Modelling of Recuperative Solid Oxide Fuel Cell–Gas Turbine Hybrid Systems: Design Conditions and Off-Design Analysis
,”
Appl. Energy
,
283
, p.
116237
.
14.
Wang
,
X.
,
Lv
,
X.
, and
Weng
,
Y.
,
2020
, “
Performance Analysis of a Biogas-Fueled SOFC/GT Hybrid System Integrated With Anode-Combustor Exhaust gas Recirculation Loops
,”
Energy
,
197
, p.
117213
.
15.
Rizvandi
,
O. B.
,
Miao
,
X.-Y.
, and
Frandsen
,
H. L.
,
2021
, “
Multiscale Modeling of Degradation of Full Solid Oxide Fuel Cell Stacks
,”
Int. J. Hydrogen Energy
,
46
(
54
), pp.
27709
27730
.
16.
Zhang
,
H.
,
Zhu
,
Y.
,
Chen
,
Z.
,
Lu
,
L.
,
Levtsev
,
A.
, and
Chen
,
D.
,
2022
, “
Investigate the Multi-Physics Performance of a New Fuel Cell Stack by a 3D Large-Scale Model Basing on Realistic Structures
,”
Int. J. Hydrog. Energy
,
17.
Jurado
,
F.
,
2006
, “
Predictive Control of Solid Oxide Fuel Cells Using Fuzzy Hammerstein Models
,”
J. Power Sources
,
158
(
1
), pp.
245
253
.
18.
Bhattacharyya
,
D.
, and
Rengaswamy
,
R.
,
2010
, “
System Identification and Nonlinear Model Predictive Control of a Solid Oxide Fuel Cell
,”
Ind. Eng. Chem. Res.
,
49
(
10
), pp.
4800
4808
.
19.
Wu
,
X. J.
,
Zhu
,
X. J.
,
Cao
,
G. Y.
, and
Tu
,
H. Y.
,
2008
, “
Predictive Control of SOFC Based on a GA-RBF Neural Network Model
,”
J. Power Sources
,
179
(
1
), pp.
232
239
.
20.
Huo
,
H.-B.
,
Zhong
,
Z.-D.
,
Zhu
,
X.-J.
, and
Tu
,
H.-Y.
,
2008
, “
Nonlinear Dynamic Modeling for a SOFC Stack by Using a Hammerstein Model
,”
J. Power Sources
,
175
(
1
), pp.
441
446
.
21.
Wu
,
X.
,
Zhu
,
X.
,
Cao
,
G.
, and
Tu
,
H.
,
2008
, “
Nonlinear Modeling of a SOFC Stack Based on ANFIS Identification
,”
Simul. Model. Pract. Theory
,
16
(
4
), pp.
399
409
.
22.
İskenderoğlu
,
F. C.
,
Baltacioğlu
,
M. K.
,
Demir
,
M. H.
,
Baldinelli
,
A.
,
Barelli
,
L.
, and
Bidini
,
G.
,
2020
, “
Comparison of Support Vector Regression and Random Forest Algorithms for Estimating the SOFC Output Voltage by Considering Hydrogen Flow Rates
,”
Int. J. Hydrogen Energy
,
45
(
60
), pp.
35023
35038
.
23.
Song
,
S.
,
Xiong
,
X.
,
Wu
,
X.
, and
Xue
,
Z.
,
2021
, “
Modeling the SOFC by BP Neural Network Algorithm
,”
Int. J. Hydrogen Energy
,
46
(
38
), pp.
20065
20077
.
24.
Wang
,
Y.
,
Wu
,
C.
,
Zhao
,
S.
,
Wang
,
J.
,
Zu
,
B.
,
Han
,
M.
,
Du
,
Q.
,
Ni
,
M.
, and
Jiao
,
K.
,
2022
, “
Coupling Deep Learning and Multi-Objective Genetic Algorithms to Achieve High Performance and Durability of Direct Internal Reforming Solid Oxide Fuel Cell
,”
Appl. Energy
,
315
, p.
119046
.
25.
Fiedler
,
B.
, and
Schuppert
,
A.
,
2008
, “
Local Identification of Scalar Hybrid Models With Tree Structure
,”
IMA J. Appl. Math.
,
73
(
3
), pp.
449
476
.
26.
Han
,
I.-S.
, and
Chung
,
C.-B.
,
2017
, “
A Hybrid Model Combining a Support Vector Machine With an Empirical Equation for Predicting Polarization Curves of PEM Fuel Cells
,”
Int. J. Hydrogen Energy
,
42
(
10
), pp.
7023
7028
.
27.
Chaichana
,
K.
,
Patcharavorachot
,
Y.
,
Chutichai
,
B.
,
Saebea
,
D.
,
Assabumrungrat
,
S.
, and
Arpornwichanop
,
A.
,
2012
, “
Neural Network Hybrid Model of a Direct Internal Reforming Solid Oxide Fuel Cell
,”
Int. J. Hydrogen Energy
,
37
(
3
), pp.
2498
2508
.
28.
Ba
,
L.
,
Xiong
,
X.
,
Yang
,
Z.
,
Lei
,
Z.
,
Ge
,
B.
, and
Peng
,
S.
,
2021
, “
A Novel Multi-Physics and Multi-Dimensional Model for Solid Oxide Fuel Cell Stacks Based on Alternative Mapping of BP Neural Networks
,”
J. Power Sources
,
500
, p.
229784
.
29.
Xu
,
Y.-w.
,
Wu
,
X.-l.
,
Zhong
,
X.-b.
,
Zhao
,
D.-q.
,
Sorrentino
,
M.
,
Jiang
,
J.
,
Jiang
,
C.
,
Fu
,
X.
, and
Li
,
X.
,
2021
, “
Mechanism Model-Based and Data-Driven Approach for the Diagnosis of Solid Oxide Fuel Cell Stack Leakage
,”
Appl. Energy
,
286
, p.
116508
.
30.
Chen
,
J.
,
Gao
,
K.
,
Liang
,
M.
, and
Zhang
,
H.
,
2019
, “
Performance Evaluation of a SOFC-GT Hybrid System With Ejectors for the Anode and Cathode Recirculations
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
4
), p.
041004
.
31.
Chen
,
J.
,
Zhang
,
H.
, and
Weng
,
S.
,
2017
, “
Study on Nonlinear Identification SOFC Temperature Model Based on Particle Swarm Optimization-Least Squares Support Vector Regression
,”
ASME J. Electrochem. Energy Convers. Storage
,
14
(
3
), p.
031003
.
32.
Wang
,
L.
,
Zhang
,
H.
, and
Weng
,
S.
,
2008
, “
Modeling and Simulation of Solid Oxide Fuel Cell Based on the Volume-Resistance Characteristic Modeling Technique
,”
J. Power Sources
,
177
(
2
), pp.
579
589
.
33.
Achenbach
,
E.
,
1994
, “
Three-Dimensional and Time-Dependent Simulation of a Planar Solid Oxide Fuel Cell Stack
,”
J. Power Sources
,
49
(
1–3
), pp.
333
348
.
34.
Kurunç
,
A.
,
Yürekli
,
K.
, and
Cevik
,
O.
,
2005
, “
Performance of Two Stochastic Approaches for Forecasting Water Quality and Streamflow Data From Yeşilιrmak River, Turkey
,”
Environ. Model. Softw.
,
20
(
9
), pp.
1195
1200
.
35.
Vapnik
,
V.
,
1995
,
The Nature of Statistical Learning Theory
,
Springer
,
New York
.
36.
Cherkassky
,
V.
, and
Ma
,
Y.
,
2004
, “
Practical Selection of SVM Parameters and Noise Estimation for SVM Regression
,”
Neural Netw.
,
17
(
1
), pp.
113
126
.
37.
Suykens
,
J. A.
, and
Vandewalle
,
J.
,
1999
, “
Least Squares Support Vector Machine Classifiers
,”
Neural Process. Lett.
,
9
(
3
), pp.
293
300
.
38.
Smola
,
A. J.
, and
Schölkopf
,
B.
,
2004
, “
A Tutorial on Support Vector Regression
,”
Stat. Comput.
,
14
(
3
), pp.
199
222
.
39.
Ma
,
N.
,
Xu
,
W.
,
Wang
,
X.
,
Wei
,
Z.
, and
Pang
,
G.
,
2011
, “
Prediction Method for Surface Finishing of Spiral Bevel Gear Tooth Based on Least Square Support Vector Machine
,”
J. Cent. South Univ.
,
18
(
3
), pp.
685
689
.
40.
Bessler
,
W. G.
,
Gewies
,
S.
,
Willich
,
C.
,
Schiller
,
G.
, and
Friedrich
,
K. A.
,
2010
, “
Spatial Distribution of Electrochemical Performance in a Segmented SOFC: A Combined Modeling and Experimental Study
,”
Fuel Cells
,
10
(
3
), pp.
411
418
.
41.
Willich
,
C.
,
2012
,
Local Characterisation of Solid Oxide Fuel Cells
,
University of Stuttgart
,
Germany
.
42.
Schulze
,
M.
,
Gülzow
,
E.
,
Knöri
,
T.
, and
Reissner
,
R.
,
2007
, “
Segmented Cells as Tool for Development of Fuel Cells and Error Prevention/Prediagnostic in Fuel Cell Stacks
,”
J. Power Sources
,
173
(
1
), pp.
19
27
.
43.
Zou
,
W.
,
Froning
,
D.
,
Shi
,
Y.
, and
Lehnert
,
W.
,
2021
, “
An Online Adaptive Model for the Nonlinear Dynamics of Fuel Cell Voltage
,”
Appl. Energy
,
288
, p.
116561
.
44.
Ferrari
,
M. L.
,
Traverso
,
A.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2005
, “
Influence of the Anodic Recirculation Transient Behaviour on the SOFC Hybrid System Performance
,”
J. Power Sources
,
149
, pp.
22
32
.
You do not currently have access to this content.