Abstract

Because the fault characteristics of inconsistent fault single battery are not obvious in the electric vehicle battery pack, it is difficult to identify the inconsistent fault. Therefore, this paper proposes an inconsistent fault detection method based on a fireworks algorithm (FWA) optimized deep belief network (DBN). The method feeds the raw data signal into a deep belief network algorithm for training, which automatically performs feature extraction and intelligent diagnosis of inconsistencies, without requiring the time domain signal to be periodic. The top-level algorithm of the deep belief network adopts error Back Propagation (BP). Using FWA training to optimize DBN-BP, the best DBN-BP-FWA model structure can be obtained. Experimental verification was carried out using real vehicle data from electric vehicles. The inconsistency diagnosis results show that, compared with the traditional inconsistency diagnosis method, the application of this paper's method for electric vehicle single battery fault detection can obtain higher accuracy, with an average accuracy of 96.19%.

References

1.
Xiaoyi
,
X.
,
Dongsheng
,
R.
,
Li
,
W.
,
Xuning
,
F.
, and
Xiangming
,
H.
,
2021
, “
Investigation on Thermal Runaway of Li-Ion Cells Based on LiNi1/3Mn1/3Co1/3O2
,”
ASME J. Electrochem. Energy Convers. Storage
,
18
(
3
), p.
031001
.
2.
Tran
,
M.-K.
, and
Fowler
,
M.
,
2020
, “
A Review of Lithium-Ion Battery Fault Diagnostic Algorithms: Current Progress and Future Challenges
,”
Algorithms
,
13
(
3
), pp.
62
62
.
3.
Wu
,
C.
,
Zhu
,
C.
,
Ge
,
Y.
,
Zhao
,
Y.
, and
Wan
,
J.
,
2015
, “
A Review on Fault Mechanism and Diagnosis Approach for Li-Ion Batteries
,”
J. Nanomater.
,
2015
, pp.
1
9
.
4.
Zhengyu
,
L.
,
Liyang
,
Y.
,
Chengcheng
,
Z.
, and
Dengwei
,
X.
,
2020
, “
Battery Fault Diagnosis Method Based on Amplitude Squared Coherence Spectrum
,”
Chin. J. Electr. Eng.
,
40
(
9
), pp.
3052
3059
.
5.
Su
,
Z.
,
Yanda
,
L.
,
Datong
,
B.
,
Keyong
,
W.
,
Jing
,
S.
, and
Zhongjun
,
H.
,
2022
, “
Real-Time Data-Driven Fault Diagnosis of Proton Exchange Membrane Fuel Cell System Based on Binary Encoding Convolutional Neural Network
,”
Int. J. Hydrogen Energy
,
47
(
20
), pp.
10976
10989
.
6.
Lulu
,
J.
,
Zhongwei
,
D.
,
Xiaolin
,
T.
,
Lin
,
H.
,
Xianke
,
L.
, and
Xiaosong
,
H.
,
2021
, “
Data-Driven Fault Diagnosis and Thermal Runaway Warning for Battery Packs Using Real-World Vehicle Data
,”
Energy
,
234
.
7.
Li
,
S.
,
Zhou
,
Y.
,
Li
,
R.
, and
Zhao
,
X.
,
2020
, “
Online Lithium Battery Fault Diagnosis Based on Least Square Support Vector Machine Optimized by Ant Lion Algorithm
,”
Int. J. Perform. Eng.
,
16
(
10
), pp.
1637
1645
.
8.
Shucong
,
L.
,
Hongjun
,
W.
,
Rui
,
L.
, and
Beilei
,
J.
,
2022
, “
A Novel Feature Identification Method of Pipeline In-Line Inspected Bending Strain Based on Optimized Deep Belief Network Model
,”
Energies
,
15
(
4
), pp.
1586
1586
.
9.
Usman
,
S.
,
Jorge
,
L.-B.
,
Hai-Tra
,
N.
, and
ChangKyoo
,
Y.
,
2022
, “
A Hybrid Extreme Learning Machine and Deep Belief Network Framework for Sludge Bulking Monitoring in a Dynamic Wastewater Treatment Process
,”
J. Water Process. Eng.
,
46
.
10.
Li
,
X.
,
Shao
,
H.
,
Jiang
,
H.
, and
Xiang
,
J.
,
2022
, “
Modified Gaussian Convolutional Deep Belief Network and Infrared Thermal Imaging for Intelligent Fault Diagnosis of Rotor-Bearing System Under Time-Varying Speeds
,”
Struct. Health. Monit.
,
21
(
2
), pp.
339
353
.
11.
Hao
,
S.
,
Xin
,
Y.
,
Ling
,
X.
,
Aijun
,
H.
, and
Yonggang
,
X.
,
2022
, “
A Novel Method Based on Deep Transfer Unsupervised Learning Network for Bearing Fault Diagnosis Under Variable Working Condition of Unequal Quantity
,”
Knowl.-Based Syst.
,
242
.
12.
Kumar T.
,
S.
,
Arun
,
C.
, and
Ezhumalai
,
P.
,
2022
, “
An Approach for Brain Tumor Detection Using Optimal Feature Selection and Optimized Deep Belief Network
,”
Biomed. Signal Process. Control
,
73
, p.
103421
.
13.
Dexin
,
G.
,
Yi
,
W.
,
Xiaoyu
,
Z.
, and
Qing
,
Y.
,
2021
, “
A Fault Warning Method for Electric Vehicle Charging Process Based on Adaptive Deep Belief Network
,”
World Electr. Veh. J.
,
12
(
4
), pp.
265
265
.
14.
Xinyue
,
Z.
,
Baoxing
,
S.
,
Lin
,
L.
,
Daohong
,
L.
,
Meng
,
Y.
, and
Gengyin
,
L.
,
2022
, “
Residential Electricity Load Forecasting Based on Fuzzy Cluster Analysis and LSSVM With Optimization by the Fireworks Algorithm
,”
Sustainability
,
14
(
3
), pp.
1312
1312
.
15.
Haixun
,
F.
,
Kenan
,
Y.
,
Zihang
,
J.
, and
Huijing
,
B.
,
2021
, “
Hierarchical Information Fault Diagnosis Method for Power System Based on Fireworks Algorithm
,”
Distrib. Gener. Altern. Energy J.
,
36
(
3
), pp.
269
286
.
16.
Yang
,
L.
,
Yanhou
,
L.
,
Yebing
,
T.
,
Yi
,
W.
, and
Jinling
,
W.
,
2022
, “
Application of Improved Fireworks Algorithm in Grinding Surface Roughness Online Monitoring
,”
J. Manuf. Process.
,
74
, pp.
400
412
.
17.
Bilin
,
S.
,
Dan
,
S.
,
Genqing
,
B.
,
Yu
,
Z.
, and
Wei
,
L.
,
2021
, “
Wind Speed Forecast Based on the LSTM Neural Network Optimized by the Firework Algorithm
,”
Adv. Mater. Sci. Eng.
,
2021
, pp.
1
13
.
18.
Xiaojing
,
L.
, and
Xiaolin
,
Q.
,
2021
, “
A Neighborhood Information Utilization Fireworks Algorithm and Its Application to Traffic Flow Prediction
,”
Expert Syst. Appl.
,
183
, p. 115189.
19.
Shen
,
X.
,
You
,
X.
,
Huang
,
Y.
, and
Guo
,
Y.
,
2021
, “
A Local Region Enhanced Multi-objective Fireworks Algorithm With Subpopulation Cooperative Selection
,”
Int. J. Comput. Sci. Eng.
,
24
(
6
), pp.
572
586
.
20.
Mohsen
,
Z.
,
Rasoul
,
N. M.
,
Mostafa
,
M.
,
Rasoul
,
A.-A.
, and
Vladimir
,
T.
,
2021
, “
Reserve Constrained Dynamic Economic Dispatch in Multi-area Power Systems: An Improved Fireworks Algorithm
,”
Int. J. Electr. Power Energy Syst.
,
126
(
PA. 2021
), p.
106579
.
21.
Wanbo
,
G.
,
Junwu
,
Z.
,
Yonglong
,
Z.
, and
Xiaowei
,
Z.
,
2022
, “
Path Planning of Unmanned Vehicles Based on Selective Crossing Fireworks Algorithm
,”
Comput. Eng.
, pp.
1
10
.
22.
Meng
,
L.
,
Weihui
,
H.
,
Pandeng
,
M.
,
Xiaogang
,
Q.
, and
Lifang
,
L.
,
2022
, “
A Genetic-Fireworks Hybrid Algorithm for Maintenance Resource Distribution Scheduling
,”
Int. J. Intell. Syst.
,
17
(
1
), pp.
88
97
.
23.
Liang
,
Y.
,
Zhi
,
L.
, and
Haiwei
,
Y.
,
2022
, “
Medium-Term Load Forecasting Method With Improved Deep Belief Network for Renewable Energy
,”
Distrib. Gener. Altern. Energy J.
,
37
(
3
), pp.
485
500
.
24.
Lin
,
B.
,
Xiaoyan
,
S.
,
Dunwei
,
G.
, and
Yong
,
Z.
,
2022
, “
An Augmented Restricted Boltzmann Machine-Driven Interactive Distribution Estimation Algorithm Integrating Attention Mechanism
,”
J. Autom.
, pp.
1
14
.
25.
Elena
,
A.
, and
Giulia
,
S.
,
2021
, “
Learning and Retrieval Operational Modes for Three-Layer Restricted Boltzmann Machines
,”
J. Stat. Phys.
,
185
(
2
).
26.
Ma
,
X.
, and
Wang
,
X.
,
2016
, “
Average Contrastive Divergence for Training Restricted Boltzmann Machines
,”
Entropy
,
18
(
1
), pp.
35
35
.
You do not currently have access to this content.