Abstract

Ball milled SnCoC composites are an attractive commercial anode material to conventional graphite due to their higher specific capacity and low temperature performance. The effect of ball milling time on the structure and electrochemical properties of the (Sn71Co29)50C50 wt% composite anodes are studied to understand the reasons for the non-realization of the theoretical capacity. Structural analysis reveals the damage of graphite structure with increasing ball milling time from 10 h to 60 h. The cyclic voltammetry and differential capacity measurements indicate the decreasing contribution to capacity from graphite and increasing contribution from Sn with increase in the milling time. The charge-discharge cycling of the anodes at different C rates indicates that though the specific capacity does not improve with longer milling time, the rate capability improves significantly. The damage in the graphite structure during high energy ball milling is found to reduce the capacity of the SnCoC anodes. Based on the investigations, it can be concluded that 10 h of milling time is optimum to realize high specific capacity, whereas longer durations of milling are desirable for high rate discharge characteristics.

References

1.
Miyaki
,
Y.
,
2005
, “
Non-aqueous Electrolyte Secondary Battery
,” U.S. Patent No. 6908709 B2.
2.
Wolfenstine
,
J.
,
Allen
,
J. L.
,
Read
,
J.
, and
Fost
,
D.
,
2006
, “
Chemistry and Structure of Sony’s Nexelion Li-Ion Electrode Materials
,”
Army Research Laboratory
, Report No. ARL-TN-0257.
3.
Fan
,
Q.
,
Chupas
,
P. J.
, and
Whittingham
,
M. S.
,
2007
, “
Characterization of Amorphous and Crystalline Tin–Cobalt Anodes
,”
Electrochem. Solid-State Lett.
,
10
(
12
), pp.
A274
A278
.
4.
Foster
,
D.
,
Wolfenstine
,
J.
,
Read
,
J.
, and
Allen
,
J. L.
,
2008
, “
Performance of Sony’s Alloy Based Li-Ion Battery
,”
Army Research Laboratory
, Report No. ARL-TN-0319.
5.
Dahn
,
J. R.
,
Mar
,
R. E.
, and
Abouzeid
,
A.
,
2006
, “
Combinatorial Study of Sn1−XCox (0 < x < 0.6) and [Sn0.55Co0.45]1−yCy (0 < y < 0.5) Alloy Negative Electrode Materials for Li-Ion Batteries
,”
J. Electrochem. Soc.
,
153
(
2
), pp.
A361
A365
.
6.
Todd
,
A. D. W.
,
Mar
,
R. E.
, and
Dahn
,
J. R.
,
2007
, “
Tin–Transition Metal–Carbon Systems for Lithium-Ion Battery Negative Electrodes
,”
J. Electrochem. Soc.
,
154
(
6
), pp.
A597
A604
.
7.
Ferguson
,
P. P.
,
Martine
,
M. L.
,
Dunlap
,
R. A.
, and
Dahn
,
J. R.
,
2009
, “
Structural and Electrochemical Studies of (SnxCo1−x)60C40 Alloys Prepared by Mechanical Attriting
,”
Electrochim. Acta
,
54
(
19
), pp.
4534
4539
.
8.
Ferguson
,
P. P.
,
Rajora
,
M.
,
Dunlap
,
R. A.
, and
Dahn
,
J. R.
,
2009
, “
(Sn0.5Co0.5)1−yCy Alloy Negative Electrode Materials Prepared by Mechanical Attriting
,”
J. Electrochem. Soc.
,
156
(
3
), pp.
A204
A208
.
9.
Kumar A.
,
S.
,
Srinivas
,
M.
,
Phani Kiran
,
A. V.
, and
Neelakantan
,
L.
,
2019
, “
Structural and Electrochemical Properties of (SnxCo100-x)50C50 Anodes for Li-Ion Batteries
,”
Mater. Chem. Phys.
,
236
, p.
121782
.
10.
Ferguson
,
P. P.
,
Todd
,
A. D. W.
, and
Dahn
,
J. R.
,
2008
, “
Comparison of Mechanically Alloyed and Sputtered Tin–Cobalt–Carbon as an Anode Material for Lithium-Ion Batteries
,”
Electrochem. Commun.
,
10
(
1
), pp.
25
31
.
11.
Ferguson
,
P. P.
,
Martine
,
M. L.
,
George
,
A. E.
, and
Dahn
,
J. R.
,
2009
, “
Studies of Tin–Transition Metal–Carbon and Tin–Cobalt–Transition Metal–Carbon Negative Electrode Materials Prepared by Mechanical Attrition
,”
J. Power Sources
,
194
(
2
), pp.
794
800
.
12.
Ferguson
,
P. P.
,
Todd
,
A. D. W.
, and
Dahn
,
J. R.
,
2010
, “
Importance of Nanostructure for High Capacity Negative Electrode Materials for Li-Ion Batteries
,”
Electrochem. Commun.
,
12
(
8
), pp.
1041
1044
.
13.
Ferguson
,
P. P.
,
Todd
,
A. D. W.
,
Martine
,
M. L.
, and
Dahn
,
J. R.
,
2014
, “
Structure and Performance of Tin-Cobalt-Carbon Alloys Prepared by Attriting, Roller Milling and Sputtering
,”
J. Electrochem. Soc.
,
161
(
3
), pp.
A342
A347
.
14.
Hausson
,
J.
,
Mulas
,
G.
,
Panero
,
S.
, and
Scrosati
,
B.
,
2007
, “
Ternary Sn–Co–C Li-Ion Battery Electrode Material Prepared by High Energy Ball Milling
,”
Electrochem. Commun.
,
9
(
8
), pp.
2075
2081
.
15.
Hausson
,
J.
,
Mulas
,
G.
,
Panero
,
S.
, and
Scrosati
,
B.
,
2007
, “
An Electrochemical Investigation of a Sn–Co–C Ternary Alloy as a Negative Electrode in Li-Ion Batteries
,”
J. Power Sources
,
172
(
2
), pp.
928
931
.
16.
Hassoun
,
J.
,
Ochal
,
P.
,
Panero
,
S.
,
Mulas
,
G.
,
Bonatto Minella
,
C.
, and
Scrosati
,
B.
,
2008
, “
The Effect of CoSn/CoSn2 Phase Ratio on the Electrochemical Behaviour of Sn40Co40C20 Ternary Alloy Electrodes in Lithium Cells
,”
J. Power Sources
,
180
(
1
), pp.
568
575
.
17.
Li Jing
,
L. D.-B.
,
Ferguson
,
P. P.
, and
Dahn
,
J. R.
,
2010
, “
Lithium Polyacrylate as a Binder for Tin–Cobalt–Carbon Negative Electrodes in Lithium-Ion Batteries
,”
Electrochim. Acta
,
55
(
8
), pp.
2991
2995
.
18.
Nacimiento
,
F.
,
Lavela
,
P.
,
Triado
,
J. L.
, and
Jiménez-Mateo
,
J. M.
,
2012
, “
A Facile Carbothermal Preparation of Sn–Co–C Composite Electrodes for Li-Ion Batteries Using Low-Cost Carbons
,”
J. Solid State Electrochem.
,
16
(
3
), pp.
953
962
.
19.
Zou
,
X.
,
Hou
,
X.
,
Cheng
,
Z.
,
Huang
,
Y.
,
Yue
,
M.
, and
Hu
,
S.
,
2014
, “
Facile Hydrothermal and Sol-gel Synthesis of Novel Sn-Co/C Composite as Superior Anodes for Li-Ion Batteries
,”
Chin. Sci. Bull.
,
59
(
23
), pp.
2875
2881
.
20.
Lavela
,
P.
,
Nacimiento
,
F.
,
Ortiz
,
G. F.
, and
Tirado
,
J. L.
,
2010
, “
Sn–Co–C Composites Obtained From Resorcinol-Formaldehyde Gel as Anodes in Lithium-Ion Batteries
,”
J. Solid State Electrochem.
,
14
(
1
), pp.
139
148
.
21.
He
,
J.
,
Zhaoa
,
H.
,
Mengwei
,
W.
, and
Xidi
,
J.
,
2010
, “
Preparation and Characterization of Co-Sn-C Anodes for Lithium-Ion Batteries
,”
Mater. Sci. Eng. B
,
171
(
1–3
), pp.
35
39
.
22.
Cui
,
W.
,
Wang
,
F.
,
Wang
,
J.
,
Congxiao
,
W.
, and
Xia
,
Y.
,
2011
, “
Nanostructural CoSnC Anode Prepared by CoSnO3 With Improved Cyclability for High-Performance Li-Ion Batteries
,”
Electrochim. Acta
,
56
(
13
), pp.
4812
4818
.
23.
Fang
,
G.
,
Liu
,
W.
,
Kaneko
,
S.
,
Xia
,
B.
,
Sun
,
H.
,
Zheng
,
J.
, and
Li
,
D.
,
2013
, “
Preparation, Microstructure, and Electrochemical Properties of Sn-Co-C Anode Materials Using Composited Carbon Sources
,”
J. Solid State Electrochem.
,
17
(
9
), pp.
2521
2529
.
24.
Zhou
,
X.
,
Zou
,
Y.
,
Yang
,
J.
,
Xie
,
J.
, and
Wang
,
S.
,
2013
, “
Layer by Layer Synthesis of Sn-Co-C Microcomposites and Their Application in Lithium Ion Batteries
,”
J. Cent. South Univ.
,
20
(
2
), pp.
326
331
.
25.
Huang
,
L.
,
Cai
,
J.
,
He
,
Y.
,
Ke
,
F.
, and
Sun
,
S.
,
2009
, “
Structure and Electrochemical Performance of Nanostructured Sn–Co Alloy/Carbon Nanotube Composites as Anodes for Lithium Ion Batteries
,”
Electrochem. Commun.
,
11
(
5
), pp.
950
953
.
26.
Tao
,
H.
,
Yao
,
Y.
,
Zhen
,
W.
,
Zheng
,
L.
, and
Yu
,
A.
,
2010
, “
Sn–Co–Artificial Graphite Composite as Anode Material for Rechargeable Lithium Batteries
,”
Electrochim. Acta
,
56
(
1
), pp.
476
482
.
27.
Chen
,
P.
,
Guo
,
L.
, and
Wang
,
Y.
,
2013
, “
Graphene Wrapped SnCo Nanoparticles for High-Capacity Lithium Ion Storage
,”
J. Power Sources
,
222
, pp.
526
532
.
28.
Lee
,
S.
,
Yoon
,
S.
,
Park
,
C.
,
Lee
,
J.
, and
Kim
,
H.
,
2008
, “
Reaction Mechanism and Electrochemical Characterization of a Sn–Co–C Composite Anode for Li-Ion Batteries
,”
Electrochim. Acta
,
54
(
2
), pp.
364
369
.
29.
Chen
,
Z.
,
Qian
,
J.
,
Xinping
,
A.
,
Cao
,
Y.
, and
Yang
,
H.
,
2009
, “
Preparation and Electrochemical Performance of Sn–Co–C Composite as Anode Material for Li-Ion Batteries
,”
J. Power Sources
,
189
(
1
), pp.
730
732
.
30.
Meng-Yuan
,
L.
,
Chun-Ling
,
L.
,
Mei-Rong
,
S.
, and
Wen-Sheng
,
S.
,
2011
, “
Nanostructure Sn–Co–C Composite Lithium Ion Battery Electrode With Unique Stability and High Electrochemical Performance
,”
Electrochim. Acta
,
56
(
8
), pp.
3023
3028
.
31.
Srinivas
,
M.
,
Srinivas Kumar
,
A.
,
Majumdar
,
B.
, and
Neelakantan
,
L.
,
2017
, “
Enhanced Capacity of SnCoC Anode by Melt Spinning and Ball Milling for Li-Ion Battery
,”
Mater. Today Commun.
,
13
, pp.
53
56
.
32.
Kinoshita
,
K.
, and
Zaghib
,
K.
,
2002
, “
Negative Electrodes for Li-Ion Batteries
,”
J. Power Sources
,
11
(
2
), pp.
416
423
.
33.
Sivakkumar
,
S. R.
,
Milev
,
A. S.
, and
Pandolfo
,
A. G.
,
2011
, “
Effect of Ball-Milling on the Rate and Cycle-Life Performance of Graphite as Negative Electrodes in Lithium-Ion Capacitors
,”
Electrochim. Acta
,
56
(
27
), pp.
9700
9706
.
34.
Welham
,
N. J.
,
Berbenni
,
V.
, and
Chapman
,
P. G.
,
2003
, “
Effect of Extended Ball Milling on Graphite
,”
J. Alloys Compd.
,
349
(
1–2
), pp.
255
263
.
35.
Wang
,
C. S.
,
Wu
,
G. T.
, and
Li
,
W. Z.
,
1998
, “
Lithium Insertion in Ball-Milled Graphite
,”
J. Power Sources
,
76
(
1
), pp.
1
10
.
36.
Yang
,
J.
,
Winter
,
M.
, and
Besenhard
,
J. O.
,
1996
, “
Small Particle Size Multiphase Li-Alloy Anodes for Lithium-Ion Batteries
,”
Solid State Ionics
,
90
(
1–4
), pp.
281
287
.
37.
Wang
,
G. X.
,
Ahn
,
J. H.
,
Lindsay
,
M. J.
,
Sun
,
L.
,
Bradhurst
,
D. H.
,
Dou
,
S. X.
, and
Liu
,
H. K.
,
2001
, “
Graphite-Tin Composites as Anode Materials for Li-Ion Batteries
,”
J. Power Sources
,
97–98
, pp.
211
215
.
38.
Winter
,
M.
,
Moeller
,
K. C.
, and
Bensenhard
,
J. O.
,
2009
, “Carbonaceous and Graphitic Anodes,”
Lithium Batteries Science and Technology
,
G. A.
Nazri
, and
G.
Pistoia
, eds.,
Springer
,
New York
.
39.
Imanishi
,
N.
,
Takeda
,
Y.
, and
Yamamoto
,
O.
,
1998
, “Development of Carbon Anodes in Li-Ion Batteries,”
Lithium–Ion Batteries: Fundamentals and Performance
,
M.
Wahihara
, and
O.
Yamamoto
, eds.,
Wiley-VCH
,
Berlin, Germany
.
You do not currently have access to this content.