Abstract

Sodium-ion batteries are considered as one of the most promising energy storage technologies that may replace lithium-ion batteries in the future. NaODFB, a new chelated sodium salt with the specific structural, has not been widely concerned by researchers. In this work, the compatibility of different NaODFB-based ether electrolytes in half-cell/full-cell systems with Na3V2(PO4)3 (NVP) cathode materials was compared. The correlation between the electrochemical performance of NVP@C/Na half cells in NaODFB-based ether electrolytes and the composition of the cathode electrolyte interface (CEI) film on the electrode surface was analyzed by electrochemical tests and other characterizations to better understand the important role of NaODFB-based ether electrolytes in the formation of the CEI film on the electrode material surface. This research provides a novel idea for the industrial design of Na-ion battery electrolyte and has significant guidance for the application of NaODFB in Na-ion battery.

References

1.
Bao
,
W.
,
Qian
,
G.
,
Zhao
,
L.
,
Yu
,
Y.
,
Su
,
L.
,
Cai
,
X.
,
Zhao
,
H.
, et al
,
2020
, “
Simultaneous Enhancement of Interfacial Stability and Kinetics of Single-Crystal LiNi0.6Mn0.2Co0.2O2 Through Optimized Surface Coating and Doping
,”
Nano Lett.
,
20
(
12
), pp.
8832
8840
.
2.
Bi
,
Y.
,
Tao
,
J.
,
Wu
,
Y.
,
Li
,
L.
,
Xu
,
Y.
,
Hu
,
E.
,
Wu
,
B.
, et al
,
2020
, “
Reversible Planar Gliding and Microcracking in a Single-Crystalline Ni-Rich Cathode
,”
Science
,
370
(
6522
), pp.
1313
1317
.
3.
Yao
,
L.
,
Li
,
Y.
,
Gao
,
X.
,
Cai
,
M.
,
Jin
,
J.
,
Yang
,
J.
,
Xiu
,
T.
,
Song
,
Z.
,
Badding
,
M. E.
, and
Wen
,
Z.
,
2021
, “
Microstructure Boosting the Cycling Stability of LiNi0.6Co0.2Mn0.2O2 Cathode Through Zr-Based Dual Modification
,”
Energy Storage Mater.
,
36
, pp.
179
185
.
4.
Chen
,
M.
,
Pan
,
Z.
,
Jin
,
X.
,
Chen
,
Z.
,
Zhong
,
Y.
,
Wang
,
X.
,
Qiu
,
Y.
,
Xu
,
M.
,
Li
,
W.
, and
Zhang
,
Y.
,
2019
, “
A Highly Integrated All-Manganese Battery With Oxide Nanoparticles Supported on the Cathode and Anode by Super-Aligned Carbon Nanotubes
,”
J. Mater. Chem. A
,
7
(
9
), pp.
4494
4504
.
5.
Lei
,
D.
,
He
,
Y. B.
,
Huang
,
H.
,
Yuan
,
Y.
,
Zhong
,
G.
,
Zhao
,
Q.
,
Hao
,
X.
, et al
,
2019
, “
Cross-Linked Beta Alumina Nanowires With Compact Gel Polymer Electrolyte Coating for Ultra-Stable Sodium Metal Battery
,”
Nat. Commun.
,
10
(
1
), p.
4244
.
6.
Cui
,
X.
,
Wang
,
S.
,
Ye
,
X.
,
Fan
,
X.
,
Gao
,
C.
,
Quan
,
Y.
,
Wen
,
S.
,
Cai
,
X.
,
Huang
,
J.
, and
Li
,
S.
,
2021
, “
Insights Into the Improved Cycle and Rate Performance by Ex-Situ F and In-Situ Mg Dual Doping of Layered Oxide Cathodes for Sodium-Ion Batteries
,”
Energy Storage Mater.
,
45
, pp.
1153
1164
.
7.
Huang
,
Y.
,
Zhao
,
L.
,
Li
,
L.
,
Xie
,
M.
,
Wu
,
F.
, and
Chen
,
R.
,
2019
, “
Electrolytes and Electrolyte/Electrode Interfaces in Sodium-Ion Batteries: From Scientific Research to Practical Application
,”
Adv. Mater.
,
31
(
21
), p.
e1808393
.
8.
Kim
,
S.-W.
,
Seo
,
D.-H.
,
Ma
,
X.
,
Ceder
,
G.
, and
Kang
,
K.
,
2012
, “
Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries
,”
Adv. Energy Mater.
,
2
(
7
), pp.
710
721
.
9.
Eshetu
,
G. G.
,
Grugeon
,
S.
,
Kim
,
H.
,
Jeong
,
S.
,
Wu
,
L.
,
Gachot
,
G.
,
Laruelle
,
S.
,
Armand
,
M.
, and
Passerini
,
S.
,
2016
, “
Comprehensive Insights Into the Reactivity of Electrolytes Based on Sodium Ions
,”
ChemSusChem
,
9
(
5
), pp.
462
471
.
10.
Ponrouch
,
A.
,
Monti
,
D.
,
Boschin
,
A.
,
Steen
,
B.
,
Johansson
,
P.
, and
Palacín
,
M. R.
,
2015
, “
Non-Aqueous Electrolytes for Sodium-Ion Batteries
,”
J. Mater. Chem. A
,
3
(
1
), pp.
22
42
.
11.
Eshetu
,
G. G.
,
Diemant
,
T.
,
Hekmatfar
,
M.
,
Grugeon
,
S.
,
Behm
,
R. J.
,
Laruelle
,
S.
,
Armand
,
M.
, and
Passerini
,
S.
,
2019
, “
Impact of the Electrolyte Salt Anion on the Solid Electrolyte Interphase Formation in Sodium Ion Batteries
,”
Nano Energy
,
55
, pp.
327
340
.
12.
Ould
,
D. M. C.
,
Menkin
,
S.
,
O'Keefe
,
C. A.
,
Coowar
,
F.
,
Barker
,
J.
,
Grey
,
C. P.
, and
Wright
,
D. S.
,
2021
, “
New Route to Battery Grade NaPF6 for Na-Ion Batteries: Expanding the Accessible Concentration
,”
Angew. Chem. Int. Ed.
,
60
(
47
), pp.
24882
24887
.
13.
Zhu
,
Y.
,
Luo
,
X.
,
Zhi
,
H.
,
Liao
,
Y.
,
Xing
,
L.
,
Xu
,
M.
,
Liu
,
X.
,
Xu
,
K.
, and
Li
,
W.
,
2018
, “
Diethyl(Thiophen-2-Ylmethyl) Phosphonate: A Novel Multifunctional Electrolyte Additive for High Voltage Batteries
,”
J. Mater. Chem. A
,
6
(
23
), pp.
10990
11004
.
14.
Zhu
,
Y.
,
Luo
,
X.
,
Zhi
,
H.
,
Yang
,
X.
,
Xing
,
L.
,
Liao
,
Y.
,
Xu
,
M.
, and
Li
,
W.
,
2017
, “
Structural Exfoliation of Layered Cathode Under High Voltage and Its Suppression by Interface Film Derived From Electrolyte Additive
,”
ACS Appl. Mater. Interfaces
,
9
(
13
), pp.
12021
12034
.
15.
Geng
,
C.
,
Buchholz
,
D.
,
Kim
,
G. T.
,
Carvalho
,
D. V.
,
Zhang
,
H.
,
Chagas
,
L. G.
, and
Passerini
,
S.
,
2018
, “
Influence of Salt Concentration on the Properties of Sodium-Based Electrolytes
,”
Small Methods
,
3
(
4
), p.
1800208
.
16.
Du
,
K.
,
Rudola
,
A.
, and
Balaya
,
P.
,
2021
, “
Investigations of Thermal Stability and Solid Electrolyte Interphase on Na2Ti3O7/C As a Non-Carbonaceous Anode Material for Sodium Storage Using Non-flammable Ether-Based Electrolyte
,”
ACS Appl. Mater. Interfaces
,
13
(
10
), pp.
11732
11740
.
17.
Ge
,
C.
,
Wang
,
L.
,
Xue
,
L.
,
Wu
,
Z.-S.
,
Li
,
H.
,
Gong
,
Z.
, and
Zhang
,
X.-D.
,
2014
, “
Synthesis of Novel Organic-Ligand-Doped Sodium Bis(Oxalate)-Borate Complexes With Tailored Thermal Stability and Enhanced Ion Conductivity for Sodium Ion Batteries
,”
J. Power Sources
,
248
, pp.
77
82
.
18.
Gao
,
L.
,
Chen
,
J.
,
Liu
,
Y.
,
Yamauchi
,
Y.
,
Huang
,
Z.
, and
Kong
,
X.
,
2018
, “
Revealing the Chemistry of an Anode-Passivating Electrolyte Salt for High Rate and Stable Sodium Metal Batteries
,”
J. Mater. Chem. A
,
6
(
25
), pp.
12012
12017
.
19.
Chen
,
J.
,
Huang
,
Z.
,
Wang
,
C.
,
Porter
,
S.
,
Wang
,
B.
,
Lie
,
W.
, and
Liu
,
H. K.
,
2015
, “
Sodium-Difluoro(oxalato)borate (NaDFOB): A New Electrolyte Salt for Na-Ion Batteries
,”
Chem. Commun.
,
51
(
48
), pp.
9809
9812
.
20.
Lee
,
M.
,
Hong
,
J.
,
Lopez
,
J.
,
Sun
,
Y.
,
Feng
,
D.
,
Lim
,
K.
,
Chueh
,
W. C.
,
Toney
,
M. F.
,
Cui
,
Y.
, and
Bao
,
Z.
,
2017
, “
High-Performance Sodium–Organic Battery by Realizing Four-Sodium Storage in Disodium Rhodizonate
,”
Nature Energy
,
2
(
11
), pp.
861
868
.
21.
Sadan
,
M. K.
,
Kim
,
H.
,
Kim
,
C.
,
Cha
,
S. H.
,
Cho
,
K.-K.
,
Kim
,
K.-W.
,
Ahn
,
J.-H.
, and
Ahn
,
H.-J.
,
2020
, “
Enhanced Rate and Cyclability of a Porous Na3V2(PO4)3 Cathode Using Dimethyl Ether As the Electrolyte for Application in Sodium-Ion Batteries
,”
J. Mater. Chem. A
,
8
(
19
), pp.
9843
9849
.
22.
Wang
,
J.
,
Zhao
,
D.
,
Cong
,
Y.
,
Zhang
,
N.
,
Wang
,
P.
,
Fu
,
X.
, and
Cui
,
X.
,
2021
, “
Analyzing the Mechanism of Functional Groups in Phosphate Additives on the Interface of LiNi0.8Co0.15Al0.05O2 Cathode Materials
,”
ACS Appl. Mater. Interfaces
,
13
(
14
), pp.
16939
16951
.
23.
Dong
,
H.
,
Fu
,
X.
,
Wang
,
J.
,
Wang
,
P.
,
Ding
,
H.
,
Song
,
R.
,
Wang
,
S.
,
Li
,
R.
, and
Li
,
S.
,
2021
, “
In-Situ Construction of Porous Si@C Composites With LiCl Template to Provide Silicon Anode Expansion Buffer
,”
Carbon
,
173
, pp.
687
695
.
24.
Dong
,
H.
,
Wang
,
J.
,
Ding
,
H.
,
Wang
,
P.
,
Song
,
R.
,
Zhang
,
N.
,
Li
,
F.
, and
Li
,
S.
,
2021
, “
The Mosaic Structure Design to Improve the Anchoring Strength of SiOx@C@Graphite Anode
,”
Mater. Today Chem.
,
22
, p.
100599
.
25.
Dong
,
H.
,
Wang
,
J.
,
Wang
,
P.
,
Ding
,
H.
,
Song
,
R.
,
Zhang
,
N.-S.
,
Zhao
,
D.-N.
,
Zhang
,
L.-J.
, and
Li
,
S.-Y.
,
2022
, “
Effect of Temperature on Formation and Evolution of Solid Electrolyte Interphase on Si@Graphite@C Anodes
,”
J. Energy Chem.
,
64
, pp.
190
200
.
26.
Wang
,
J.
,
Dong
,
H.
,
Wang
,
P.
,
Fu
,
X.-L.
,
Zhang
,
N.-S.
,
Zhao
,
D.-N.
,
Li
,
S.-Y.
, and
Cui
,
X.-L.
,
2022
, “
Adjusting the Solvation Structure With Tris(Trimethylsilyl)Borate Additive to Improve the Performance of LNCM Half Cells
,”
J. Energy Chem.
,
67
, pp.
55
64
.
27.
Du
,
K.
,
Guo
,
H.
,
Hu
,
G.
,
Peng
,
Z.
, and
Cao
,
Y.
,
2013
, “
Na3V2(PO4)3 as Cathode Material for Hybrid Lithium Ion Batteries
,”
J. Power Sources
,
223
, pp.
284
288
.
28.
Feng
,
P.
,
Wang
,
W.
,
Wang
,
K.
,
Cheng
,
S.
, and
Jiang
,
K.
,
2017
, “
Na3V2(PO4)3/C Synthesized by a Facile Solid-Phase Method Assisted With Agarose As a High-Performance Cathode for Sodium-Ion Batteries
,”
J. Mater. Chem. A
,
5
(
21
), pp.
10261
10268
.
29.
Jiang
,
X.
,
Yang
,
L.
,
Ding
,
B.
,
Qu
,
B.
,
Ji
,
G.
, and
Lee
,
J. Y.
,
2016
, “
Extending the Cycle Life of Na3V2(PO4)3 Cathodes in Sodium-Ion Batteries Through Interdigitated Carbon Scaffolding
,”
J. Mater. Chem. A
,
4
(
38
), pp.
14669
14674
.
You do not currently have access to this content.