Abstract

Porous carbon with a high surface area has attracted wide attention in energy storage systems due to its fast charge−discharge rate and exceptional rate capability. However, it is still a challenge to design electrochemical capacitors with both high energy density and power density by using low-cost electrode materials. Herein, we report a novel strategy of simultaneous dehalogenation and nitrogen doping to prepare nitrogen-doped porous carbon materials. Ethylenediamine is used as a dehalogenation agent, a structural modifier, and a nitrogen source. The optimal sample (CPVDC-3) has a high specific surface area of ∼3120 m2 g−1 with a large pore volume. An excellent electrochemical as well as energy storage behavior is shown in supercapacitors as tested in three-electrode and two-electrode system. The as-synthesized CPVDC-3 sample obtains a high specific capacitance of 402 F·g−1 at a current density of 0.5 A·g−1 in KOH. Furthermore, a specific energy of 11.1 W·h·kg−1 is obtained at the power density of 124.9 W·kg−1. The obtained nitrogen-doped porous carbon material exhibits enhanced electrochemical performance due to its high surface area and hierarchically porous structure. This work highlights a simple and feasible method to design and prepare nitrogen-doped carbon for supercapacitors, which is expected to realize the reuse of polyvinylidene chloride and alleviate the environmental pollution caused by this compound.

References

1.
Zhang
,
G. Q.
,
Zhao
,
Y. Q.
,
Jin
,
B. B.
,
Zhang
,
P.
, and
Kong
,
S. Y.
,
2020
, “
Highly Concentrated Aqueous Electrolyte With a Large Stable Potential Window for Electrochemical Double-Layer Capacitors
,”
ASME J. Electrochem. Energy Convers. Storage
,
17
(
1
), p.
011005
.
2.
Chao
,
J.
,
Yang
,
L.
,
Zhang
,
H.
,
Liu
,
J.
,
Hu
,
R.
, and
Zhu
,
M.
,
2020
, “
Engineering Layer Structure of MoS2/Polyaniline/Graphene Nanocomposites to Achieve Fast and Reversible Lithium Storage for High Energy Density Aqueous Lithium-Ion Capacitors
,”
J. Power Sources
,
450
, p.
227680
.
3.
Cao
,
J.
,
Xu
,
H.
,
Zhong
,
J.
,
Li
,
X.
,
Li
,
S.
,
Wang
,
Y.
,
Zhang
,
M.
, et al
,
2021
, “
Dual-Carbon Electrode-Based High-Energy-Density Potassium-Ion Hybrid Capacitor
,”
ACS Appl. Mater. Interfaces
,
13
(
7
), pp.
8497
8506
.
4.
Ma
,
C. D.
,
Liu
,
X. G.
,
Min
,
J. K.
,
Li
,
J. X.
,
Gong
,
J.
,
Wen
,
X.
,
Chen
,
X. C.
,
Tang
,
T.
, and
Mijowska
,
E.
,
2020
, “
Sustainable Recycling of Waste Polystyrene Into Hierarchical Porous Carbon Nanosheets With Potential Applications in Supercapacitors
,”
Nanotechnology
,
31
(
3
), p.
035402
.
5.
Jia
,
H.
,
Qiu
,
S.
,
Hu
,
F.
,
Wang
,
L.
,
Shi
,
J.
, and
Xie
,
X.
,
2020
, “
Adsorption-Doping for Preparing N-Doped Porous Carbon for Promising Electrochemical Capacitors-Using Peptone and Polymer Porous Resin as Precursors
,”
J. Energy Storage
,
28
, p.
101297
.
6.
Christner
,
L. G.
, and
Walker Jr
,
P. L.
,
1993
, “
Molecular Sieve Character of Carbons Derived From Cellulosic Precursors
,”
Carbon
,
31
(
7
), pp.
1149
1158
.
7.
Gong
,
J.
,
Chen
,
X.
, and
Tang
,
T.
,
2019
, “
Recent Progress in Controlled Carbonization of (Waste) Polymers
,”
Prog. Polym. Sci.
,
94
, pp.
1
32
.
8.
Yin
,
C.
,
Huang
,
Q.
,
Xie
,
Y.
,
Wang
,
X.
,
Xie
,
Z.
,
He
,
L.
,
Su
,
Z.
, and
Liu
,
B.
,
2007
, “
Fluffy Carbon Submicrospheres Produced by a Catalyzed Solvent-Thermal Reaction
,”
Carbon
,
45
(
7
), pp.
1589
1592
.
9.
Hu
,
C.
,
Zhang
,
G.
,
Li
,
H.
,
Zhang
,
C.
,
Chang
,
Y.
,
Chang
,
Z.
, and
Sun
,
X.
,
2017
, “
Thin Sandwich Graphene Oxide@N-Doped Carbon Composites for High-Performance Supercapacitors
,”
RSC Adv.
,
7
(
36
), pp.
22071
22078
.
10.
Xu
,
B.
,
Wu
,
F.
,
Mu
,
D.
,
Dai
,
L.
,
Cao
,
G.
,
Zhang
,
H.
,
Chen
,
S.
, and
Yang
,
Y.
,
2010
, “
Activated Carbon Prepared From PVDC by NaOH Activation as Electrode Materials for High Performance EDLCs With Non-aqueous Electrolyte
,”
Int. J. Hydrogen Energy
,
35
(
2
), pp.
632
637
.
11.
Zhu
,
D.
,
Jiang
,
J.
,
Sun
,
D.
,
Qian
,
X.
,
Wang
,
Y.
,
Li
,
L.
,
Wang
,
Z.
,
Chai
,
X.
,
Gan
,
L.
, and
Liu
,
M.
,
2018
, “
A General Strategy to Synthesize High-Level N-Doped Porous Carbons via Schiff-Base Chemistry for Supercapacitors
,”
J. Mater. Chem. A
,
6
(
26
), pp.
12334
12343
.
12.
Hu
,
C.
,
Lin
,
Y.
,
Connell
,
J. W.
,
Cheng
,
H.-M.
,
Gogotsi
,
Y.
,
Titirici
,
M.-M.
, and
Dai
,
L.
,
2019
, “
Carbon-Based Metal-Free Catalysts for Energy Storage and Environmental Remediation
,”
Adv. Mater.
,
31
(
13
), p.
1806128
.
13.
Mehra
,
P.
,
Singh
,
C.
,
Cherian
,
I.
,
Giri
,
A.
, and
Paul
,
A.
,
2021
, “
Deciphering the Incredible Supercapacitor Performance of Conducting Biordered Ultramicroporous Graphitic Carbon
,”
ACS Appl. Energy Mater.
,
4
(
5
), pp.
4416
4427
.
14.
Sun
,
C.
,
Guo
,
Z.
,
Zhou
,
M.
,
Li
,
X.
,
Cai
,
Z.
, and
Ge
,
F.
,
2021
, “
Heteroatoms-Doped Porous Carbon Electrodes With Three-Dimensional Self-supporting Structure Derived From Cotton Fabric for High-Performance Wearable Supercapacitors
,”
J. Power Sources
,
482
, p.
228934
.
15.
Zhang
,
G.
,
Wang
,
L.
,
Hao
,
Y.
,
Jin
,
X.
,
Xu
,
Y.
,
Kuang
,
Y.
,
Dai
,
L.
, and
Sun
,
X.
,
2016
, “
Unconventional Carbon: Alkaline Dehalogenation of Polymers Yields N-Doped Carbon Electrode for High-Performance Capacitive Energy Storage
,”
Adv. Funct. Mater.
,
26
(
19
), pp.
3340
3348
.
16.
Chang
,
Y.
,
Zhang
,
G.
,
Han
,
B.
,
Li
,
H.
,
Hu
,
C.
,
Pang
,
Y.
,
Chang
,
Z.
, and
Sun
,
X.
,
2017
, “
Polymer Dehalogenation-Enabled Fast Fabrication of N,S-Codoped Carbon Materials for Superior Supercapacitor and Deionization Applications
,”
ACS Appl. Mater. Interfaces
,
9
(
35
), pp.
29753
29759
.
17.
Hu
,
S.
,
Xie
,
K.
,
Zhang
,
X.
,
Zhang
,
S.
,
Gao
,
J.
,
Song
,
H.
, and
Chen
,
D.
,
2020
, “
Significantly Enhanced Capacitance Deionization Performance by Coupling Activated Carbon With Triethyltetramine-Functionalized Graphene
,”
Chem. Eng. J.
,
384
, p.
123317
.
18.
Du
,
J.
,
Chen
,
A.
,
Liu
,
L.
,
Li
,
B.
, and
Zhang
,
Y.
,
2020
, “
N-Doped Hollow Mesoporous Carbon Spheres Prepared by Polybenzoxazines Precursor for Energy Storage
,”
Carbon
,
160
, pp.
265
272
.
19.
Dang
,
V. D.
,
Ganganboina
,
A. B.
, and
Doong
,
R.-A.
,
2020
, “
Bipyridine- and Copper-Functionalized N-Doped Carbon Dots for Fluorescence Turn Off-On Detection of Ciprofloxacin
,”
ACS Appl. Mater. Interfaces
,
12
(
29
), pp.
32247
32258
.
20.
Chen
,
P.
,
Yang
,
J.-J.
,
Li
,
S.-S.
,
Wang
,
Z.
,
Xiao
,
T.-Y.
,
Qian
,
Y.-H.
, and
Yu
,
S.-H.
,
2013
, “
Hydrothermal Synthesis of Macroscopic Nitrogen-Doped Graphene Hydrogels for Ultrafast Supercapacitor
,”
Nano Energy
,
2
(
2
), pp.
249
256
.
21.
Zhou
,
M.
,
Pu
,
F.
,
Wang
,
Z.
, and
Guan
,
S.
,
2014
, “
Nitrogen-Doped Porous Carbons Through KOH Activation With Superior Performance in Supercapacitors
,”
Carbon
,
68
, pp.
185
194
.
22.
Zhang
,
Y.-L.
,
Sun
,
C.
, and
Tang
,
Z.-S.
,
2019
, “
High Specific Capacitance and High Energy Density Supercapacitor Electrodes Enabled by Porous Carbon With Multilevel Pores and Self-doped Heteroatoms Derived From Chinese Date
,”
Diamond Relat. Mater.
,
97
, p.
107455
.
23.
Selvaraj
,
A.-R.
,
Muthusamy
,
A.
,
Kim
,
H.-J.
,
Senthil
,
K.
, and
Prabakar
,
K.
,
2021
, “
Ultrahigh Surface Area Biomass Derived 3D Hierarchical Porous Carbon Nanosheet Electrodes for High Energy Density Supercapacitors
,”
Carbon
,
174
, pp.
463
474
.
24.
Liu
,
P.
,
Gao
,
S.
,
Wang
,
Y.
,
Huang
,
Y.
,
He
,
W.
,
Huang
,
W.
, and
Luo
,
J.
,
2020
, “
Carbon Nanocages with N-Doped Carbon Inner Shell and Co/N-Doped Carbon Outer Shell as Electromagnetic Wave Absorption Materials
,”
Chem. Eng. J.
,
381
, p.
122653
.
25.
Xia
,
J.
,
Zhang
,
N.
,
Chong
,
S.
,
Li
,
D.
,
Chen
,
Y.
, and
Sun
,
C.
,
2018
, “
Three-Dimensional Porous Graphene-Like Sheets Synthesized From Biocarbon via Low-Temperature Graphitization for a Supercapacitor
,”
Green Chem.
,
20
(
3
), pp.
694
700
.
26.
Liu
,
K.
,
Qian
,
M.
,
Fan
,
L.
,
Zhang
,
S.
,
Zeng
,
Y.
, and
Huang
,
F.
,
2020
, “
Dehalogenation on the Surface of Nano-templates: A Rational Route to Tailor Halogenated Polymer-Derived Soft Carbon
,”
Carbon
,
159
, pp.
221
228
.
27.
Ruan
,
J.
,
Yuan
,
T.
,
Pang
,
Y.
,
Luo
,
S.
,
Peng
,
C.
,
Yang
,
J.
, and
Zheng
,
S.
,
2018
, “
Nitrogen and Sulfur Dual-Doped Carbon Films as Flexible Free-Standing Anodes for Li-Ion and Na-Ion Batteries
,”
Carbon
,
126
, pp.
9
16
.
28.
Kim
,
D. K.
,
Bong
,
S.
,
Jin
,
X.
,
Seong
,
K.-D.
,
Hwang
,
M.
,
Kim
,
N. D.
,
You
,
N.-H.
, and
Piao
,
Y.
,
2019
, “
Facile In situ Synthesis of Multiple-Heteroatom-Doped Carbons Derived From Polyimide Precursors for Flexible All-Solid-State Supercapacitors
,”
ACS Appl. Mater. Interfaces
,
11
(
2
), pp.
1996
2005
.
29.
Li
,
Y.
,
Wang
,
G.
,
Wei
,
T.
,
Fan
,
Z.
, and
Yan
,
P.
,
2016
, “
Nitrogen and Sulfur Co-doped Porous Carbon Nanosheets Derived From Willow Catkin for Supercapacitors
,”
Nano Energy
,
19
, pp.
165
175
.
30.
Lin
,
G.
,
Ma
,
R.
,
Zhou
,
Y.
,
Liu
,
Q.
,
Dong
,
X.
, and
Wang
,
J.
,
2018
, “
KOH Activation of Biomass-Derived Nitrogen-Doped Carbons for Supercapacitor and Electrocatalytic Oxygen Reduction
,”
Electrochim. Acta
,
261
, pp.
49
57
.
31.
Song
,
Z.
,
Zhu
,
D.
,
Li
,
L.
,
Chen
,
T.
,
Duan
,
H.
,
Wang
,
Z.
,
Lv
,
Y.
,
Xiong
,
W.
,
Liu
,
M.
, and
Gan
,
L.
,
2019
, “
Ultrahigh Energy Density of a N, O Codoped Carbon Nanosphere Based All-Solid-State Symmetric Supercapacitor
,”
J. Mater. Chem.
,
7
(
3
), pp.
1177
1186
.
32.
Miao
,
L.
,
Zhu
,
D.
,
Liu
,
M.
,
Duan
,
H.
,
Wang
,
Z.
,
Lv
,
Y.
,
Xiong
,
W.
, et al
,
2018
, “
N, S Co-doped Hierarchical Porous Carbon Rods Derived From Protic Salt: Facile Synthesis for High Energy Density Supercapacitors
,”
Electrochim. Acta
,
274
, pp.
378
388
.
33.
Zhang
,
L.
,
Su
,
Z.
,
Jiang
,
F.
,
Yang
,
L.
,
Qian
,
J.
,
Zhou
,
Y.
,
Li
,
W.
, and
Hong
,
M.
,
2014
, “
Highly Graphitized Nitrogen-Doped Porous Carbon Nanopolyhedra Derived From ZIF-8 Nanocrystals as Efficient Electrocatalysts for Oxygen Reduction Reactions
,”
Nanoscale
,
6
(
12
), pp.
6590
6602
.
34.
Zhang
,
Q.
,
Han
,
K.
,
Li
,
S.
,
Li
,
M.
,
Li
,
J.
, and
Ren
,
K.
,
2018
, “
Synthesis of Garlic Skin-Derived 3D Hierarchical Porous Carbon for High-Performance Supercapacitors
,”
Nanoscale
,
10
(
5
), pp.
2427
2437
.
35.
Wang
,
J.-G.
,
Liu
,
H.
,
Sun
,
H.
,
Hua
,
W.
,
Wang
,
H.
,
Liu
,
X.
, and
Wei
,
B.
,
2018
, “
One-Pot Synthesis of Nitrogen-Doped Ordered Mesoporous Carbon Spheres for High-Rate and Long-Cycle Life Supercapacitors
,”
Carbon
,
127
, pp.
85
92
.
36.
Barua
,
A.
, and
Amit Paul
,
A.
,
2021
, “
Synergistic Effect of Oxygen and Nitrogen Co-doping in Metal–Organic Framework-Derived Ultramicroporous Carbon for an Exceptionally Stable Solid-State Supercapacitor via a “Proton Trap” Mechanism
,”
Energy Fuels
,
35
(
12
), pp.
10262
10273
.
37.
Chen
,
C.
,
Yu
,
D.
,
Zhao
,
G.
,
Du
,
B.
,
Tang
,
W.
,
Sun
,
L.
,
Sun
,
Y.
,
Besenbacher
,
F.
, and
Yu
,
M.
,
2016
, “
Three-Dimensional Scaffolding Framework of Porous Carbon Nanosheets Derived From Plant Wastes for High-Performance Supercapacitors
,”
Nano Energy
,
27
, pp.
377
389
.
38.
Xu
,
Z.-X.
,
Deng
,
X.-Q.
,
Zhang
,
S.
,
Shen
,
Y.-F.
,
Shan
,
Y.-Q.
,
Zhang
,
Z.-M.
,
Luque
,
R.
,
Duan
,
P.-G.
, and
Hu
,
X.
,
2020
, “
Benign-by-Design N-Doped Carbonaceous Materials Obtained From the Hydrothermal Carbonization of Sewage Sludge for Supercapacitor Applications
,”
Green Chem.
,
22
(
12
), pp.
3885
3895
.
39.
Chmiola
,
J.
,
Yushin
,
G.
,
Gogotsi
,
Y.
,
Portet
,
C.
,
Simon
,
P.
, and
Taberna
,
P. L.
,
2006
, “
Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer
,”
Science
,
313
(
5794
), pp.
1760
1763
.
40.
Su
,
X.-L.
,
Chen
,
J.-R.
,
Zheng
,
G.-P.
,
Yang
,
J.-H.
,
Guan
,
X.-X.
,
Liu
,
P.
, and
Zheng
,
X.-C.
,
2018
, “
Three-Dimensional Porous Activated Carbon Derived From Loofah Sponge Biomass for Supercapacitor Applications
,”
Appl. Surf. Sci.
,
436
, pp.
327
336
.
41.
Yun
,
Y.-S.
,
Park
,
H.-H.
, and
Jin
,
H.-J.
,
2012
, “
Pseudocapacitive Effects of N-Doped Carbon Nanotube Electrodes in Supercapacitors
,”
Materials
,
5
(
7
), pp.
1258
1266
.
42.
Liu
,
H.
,
Song
,
H.
,
Chen
,
X.
,
Zhang
,
S.
,
Zhou
,
J.
, and
Ma
,
Z.
,
2015
, “
Effects of Nitrogen-and Oxygen-Containing Functional Groups of Activated Carbon Nanotubes on the Electrochemical Performance in Supercapacitors
,”
J. Power Sources
,
285
, pp.
303
309
.
43.
Demir
,
M.
,
Saraswat
,
S.-K.
, and
Gupta
,
R.-B.
,
2017
, “
Hierarchical Nitrogen-Doped Porous Carbon Derived From Lecithin for High-Performance Supercapacitors
,”
RSC Adv.
,
7
(
67
), pp.
42430
42442
.
44.
Hu
,
J.
,
Li
,
C.
,
Li
,
L.
,
Qiu
,
S.
,
He
,
W.
,
Xu
,
W.
,
Mai
,
Y.
, and
Guo
,
F.
,
2020
, “
Phytic Acid Assisted Preparation of High-Performance Supercapacitor Electrodes From Noncarbonizable Polyvinylpyrrolidone
,”
J. Power Sources
,
448
, p.
227402
.
45.
Yang
,
Y.
,
Liu
,
Y.
,
Li
,
Y.
,
Deng
,
B.
,
Yin
,
B.
, and
Yang
,
M.
,
2020
, “
Design of Compressible and Elastic N-Doped Porous Carbon Nanofiber Aerogels as Binder-Free Supercapacitor Electrodes
,”
J. Mater. Chem. A
,
8
(
33
), pp.
17257
17265
.
46.
Liu
,
X.
,
Mei
,
P.
,
Lei
,
S.
,
Zhang
,
X.
,
Liu
,
Q.
, and
Yang
,
Y.
,
2020
, “
Scalable Polymerization Approach to Tailoring Morphologies of Polyimide-Derived N-Doped Carbons for High-Performance Supercapacitors
,”
Energy Technol.
,
8
(
1
), p.
1901013
.
47.
Qiu
,
Z.
,
Wang
,
Y.
,
Bi
,
X.
,
Zhou
,
T.
,
Zhou
,
J.
,
Zhao
,
J.
,
Miao
,
Z.
,
Yi
,
W.
,
Fu
,
P.
, and
Zhuo
,
S.
,
2018
, “
Biochar-Based Carbons With Hierarchical Micro-Meso-Macro Porosity for High Rate and Long Cycle Life Supercapacitors
,”
J. Power Sources
,
376
, pp.
82
90
.
48.
Zhao
,
G.
,
Chen
,
C.
,
Yu
,
D.
,
Sun
,
L.
,
Yang
,
C.
,
Zhang
,
H.
,
Sun
,
Y.
,
Besenbacher
,
F.
, and
Yu
,
M.
,
2018
, “
One-Step Production of O-N-S Co-doped Three-Dimensional Hierarchical Porous Carbons for High-Performance Supercapacitors
,”
Nano Energy
,
47
, pp.
547
555
.
You do not currently have access to this content.