Abstract

The use of permselective spacers in reverse electrodialysis (RED) stack introduces a more severe concentration polarization phenomenon at membrane–solution interfaces in spite of effectively suppressing the spacer shadow effect. In this paper, the concentration polarization phenomenon in RED with permselective spacers is analyzed for different membrane types, numbers of cell pairs, solution concentrations, and temperatures by measuring non-ohmic resistance based on direct and alternating current methods combined with theoretical formula. Experiments on direct current method are further made to determine the influence of concentration polarization on power output and power generation performance of stack for different factors. The results show that the non-ohmic resistance accounts for less than 40% of the total stack resistance. Increasing the flowrate and solution temperature effectively suppresses the concentration polarization in stack and thus is beneficial to improving the power output. However, the membrane type, number of cell pairs, and solution concentration hardly affect concentration polarization. In spite of this, these factors all have a considerable impact on the power generation performance of the stack. Among them, increasing the concentration of concentrated and diluted solutions is most beneficial to improving the power density.

References

1.
Guo
,
Z. Y.
,
Ji
,
Z. Y.
,
Zhang
,
Y. G.
,
Yang
,
F. J.
,
Liu
,
J.
,
Zhao
,
Y. Y.
, and
Yuan
,
J. S.
,
2018
, “
Effect of Ions (K+, Mg2+, Ca2 + and SO42−) and Temperature on Energy Generation Performance of Reverse Electrodialysis Stack
,”
Electrochim. Acta
,
290
, pp.
282
290
.
2.
Moreno
,
J.
,
Díez
,
V.
,
Saakes
,
M.
, and
Nijmeijer
,
K.
,
2018
, “
Mitigation of the Effects of Multivalent Ion Transport in Reverse Electrodialysis
,”
J. Membr. Sci.
,
550
, pp.
155
162
.
3.
Liu
,
F.
,
Coronell
,
O.
, and
Call
,
D. F.
,
2017
, “
Electricity Generation Using Continuously Recirculated Flow Electrodes in Reverse Electrodialysis
,”
J. Power Sources
,
355
, pp.
206
210
.
4.
Giacalone
,
F.
,
Catrini
,
P.
,
Tamburini
,
A.
,
Cipollina
,
A.
,
Piacentino
,
A.
, and
Micale
,
G.
,
2018
, “
Exergy Analysis of Reverse Electrodialysis
,”
Energy Convers. Manage.
,
164
, pp.
588
602
.
5.
Dlugolecki
,
P. E.
,
Gambier
,
A.
,
Nijmeijer
,
D. C.
, and
Wessling
,
M.
,
2009
, “
Practical Potential of Reverse Electrodialysis as Process for Sustainable Energy Generation
,”
Environ. Sci. Technol.
,
43
(
17
), pp.
6888
6894
.
6.
Balster
,
J.
,
Stamatialis
,
D. F.
, and
Wessling
,
M.
,
2010
, “
Membrane With Integrated Spacer
,”
J. Membr. Sci.
,
360
(
1–2
), pp.
185
189
.
7.
Li
,
M.
,
Guo
,
J.
,
Wang
,
Y.
,
Wu
,
Y.
,
Guo
,
P.
, and
Li
,
X.
,
2022
, “
Reverse Electrodialysis for Power Production With Ion-Permselective Spacers and its Optimization
,”
J. Appl. Electrochem.
,
52
(
2
), pp.
1
14
.
8.
Dlugolecki
,
P.
,
Dabrowska
,
J.
,
Nijmeijer
,
K.
, and
Wessling
,
M.
,
2010
, “
Ion Conductive Spacers for Increased Power Generation in Reverse Electrodialysis
,”
J. Membr. Sci.
,
347
(
1–2
), pp.
101
107
.
9.
Barragan
,
V. M.
, and
Ruız-Bauza
,
C.
,
1998
, “
Current-Voltage Curves for Ion-Exchange Membranes: A Method for Determining the Limiting Current Density
,”
J. Colloid Interface Sci.
,
205
(
2
), pp.
365
373
.
10.
Hong
,
J. G.
,
Zhang
,
B.
,
Glabman
,
S.
,
Uzal
,
N.
,
Dou
,
X.
,
Zhang
,
H.
, and
Wei
,
X.
,
2015
, “
Potential Ion Exchange Membranes and System Performance in Reverse Electrodialysis for Power Generation: A Review
,”
J. Membr. Sci.
,
486
, pp.
71
88
.
11.
Vermaas
,
D. A.
,
Saakes
,
M.
, and
Nijmeijer
,
K.
,
2011
, “
Doubled Power Density From Salinity Gradients at Reduced Inter Membrane Distance
,”
Environ. Sci. Technol.
,
45
(
16
), pp.
7089
7095
.
12.
Vermaas
,
D. A.
,
Saakes
,
M.
, and
Nijmeijer
,
K.
,
2011
, “
Power Generation Using Profiled Membranes in Reverse Electrodialysis
,”
J. Membr. Sci.
,
385
, pp.
234
242
.
13.
Ortiz
,
I. R.
,
Gomez
,
C. L.
,
Fallanza
,
M.
,
Ortiz
,
A.
, and
Ortiz
,
I.
,
2019
, “
Comparative Performance of Salinity Gradient Power-Reverse Electrodialysis Under Different Operating Conditions
,”
Desalination
,
457
, pp.
8
21
.
14.
Post
,
J. W.
,
Hamelers
,
H. V. M.
, and
Buisman
,
C. J. N.
,
2008
, “
Energy Recovery From Controlled Mixing Salt and Fresh Water With a Reverse Electrodialysis System
,”
Environ. Sci. Technol. Environ.
,
42
(
15
), pp.
5785
5790
.
15.
Choi
,
I.
,
Han
,
J. Y.
,
Yoo
,
S. J.
,
Henkensmeier
,
D.
,
Kim
,
J. Y.
,
Lee
,
S. Y.
, and
Han
,
J.
,
2016
, “
Experimental Investigation of Operating Parameters in Power Generation by Lab-Scale Reverse Electro-Dialysis (RED)
,”
Bull. Korean Chem. Soc.
,
37
(
7
), pp.
1010
1019
.
16.
Avci
,
A. H.
,
Tufa
,
R. A.
,
Fontananova
,
E.
,
Profio
,
G. D.
, and
Curcio
,
E.
,
2018
, “
Reverse Electrodialysis for Energy Production From Natural River Water and Seawater
,”
Energy
,
165
, pp.
512
521
.
17.
Vermaas
,
D. A.
,
Saakes
,
M.
, and
Nijmeijer
,
K.
,
2014
, “
Enhanced Mixing in the Diffusive Boundary Layer for Energy Generation in Reverse Electrodialysis
,”
J. Membr. Sci.
,
453
, pp.
312
319
.
18.
Zhu
,
X.
,
He
,
W.
, and
Logana
,
B. E.
,
2015
, “
Reducing Pumping Energy by Using Different Flow Rates of High and Low Concentration Solutions in Reverse Electrodialysis Cells
,”
J. Membr. Sci.
,
486
, pp.
215
221
.
19.
Veermana
,
J.
,
de Jong
,
R. M.
,
Saakes
,
M.
,
Metz
,
S. J.
, and
Harmsen
,
G. J.
,
2009
, “
Reverse Electrodialysis: Comparison of Six Commercial Membrane Pairs on the Thermodynamic Efficiency and Power Density
,”
J. Membr. Sci.
,
343
(
1–2
), pp.
7
15
.
20.
Tedesco
,
M.
,
Brauns
,
E.
,
Cipollina
,
A.
,
Micale
,
G.
,
Modica
,
P.
,
Russo
,
G.
, and
Helsen
,
J.
,
2015
, “
Reverse Electrodialysis With Saline Waters and Concentrated Brines: A Laboratory Investigation Towards Technology Scale-Up
,”
J. Membr. Sci.
,
492
, pp.
9
20
.
21.
Daniilidis
,
A.
,
Vermaas
,
D. A.
,
Herber
,
R.
, and
Nijmeijer
,
K.
,
2014
, “
Experimentally Obtainable Energy From Mixing River Water, Seawater or Brines With Reverse Electrodialysis
,”
Renewable Energy
,
64
, pp.
123
131
.
22.
Kingsbury
,
R. S.
,
Liu
,
F.
,
Zhu
,
S.
,
Boggs
,
C.
,
Armstrong
,
M. D.
,
Call
,
D. F.
, and
Coronell
,
O.
,
2017
, “
Impact of Natural Organic Matter and Inorganic Solutes on Energy Recovery From Five Real Salinity Gradients Using Reverse Electrodialysis
,”
J. Membr. Sci.
,
541
, pp.
621
632
.
23.
Vermaasa
,
D. A.
,
Guler
,
E.
,
Saakes
,
M.
, and
Nijmeijer
,
K.
,
2012
, “
Theoretical Power Density From Salinity Gradients Using Reverse Electrodialysis
,”
Energy Procedia
,
20
, pp.
170
184
.
24.
Tufa
,
R. A.
,
Pawlowski
,
S.
,
Veerman
,
J.
,
Bouzek
,
K.
,
Fontananova
,
E.
,
di Profio
,
G.
,
Velizarov
,
S.
,
Goulao Crespo
,
J.
,
Nijmeijer
,
K.
, and
Curcio
,
E.
,
2018
, “
Progress and Prospects in Reverse Electrodialysis for Salinity Gradient Energy Conversion and Storage
,”
Appl. Energy
,
225
, pp.
290
331
.
25.
Daniilidis
,
A.
,
Herber
,
R.
, and
Vermaas
,
D. A.
,
2014
, “
Upscale Potential and Financial Feasibility of a Reverse Electrodialysis Power Plant
,”
Appl. Energy
,
119
, pp.
257
265
.
26.
Mehdizadeh
,
S.
,
Yasukawa
,
M.
,
Kuno
,
M.
,
Kawabata
,
Y.
, and
Higa
,
M.
,
2019
, “
Evaluation of Energy Harvesting From Discharged Solutions in a Salt Production Plant by Reverse Electrodialysis (RED)
,”
Desalination
,
467
, pp.
95
102
.
27.
Dlugolecki
,
P.
,
Nymeijer
,
K.
,
Metz
,
S.
, and
Wessling
,
M.
,
2008
, “
Current Status of Ion Exchange Membranes for Power Generation From Salinity Gradients
,”
J. Membr. Sci.
,
319
(
1–2
), pp.
214
222
.
28.
Mandersloot
,
W. G. B.
, and
Hicks
,
R. E.
,
1966
, “
Leakage Currents in Electrodialytic Desalting and Brine Production
,”
Desalination
,
1
(
2
), pp.
178
194
.
29.
Veerman
,
J.
,
Post
,
J. W.
,
Saakes
,
M.
,
Metz
,
S. J.
, and
Harmsen
,
G. J.
,
2008
, “
Reducing Power Losses Caused by Ionic Shortcut Currents in Reverse Electrodialysis Stacks by a Validated Model
,”
J. Membr. Sci.
,
310
(
1–2
), pp.
418
430
.
30.
Post
,
J. W.
,
Hamelers
,
H. V. M.
, and
Buisman
,
C. J. N.
,
2009
, “
Influence of Multivalent Ions on Power Production From Mixing Salt and Fresh Water With a Reverse Electrodialysis System
,”
J. Membr. Sci.
,
330
(
1–2
), pp.
65
72
.
31.
Li
,
M.
,
Wang
,
Y.
,
Guo
,
J.
,
Li
,
X.
, and
Guo
,
P.
,
2022
, “
Investigation of the Power Generation Performance of a Stack by Reverse Electrodialysis and Its Influencing Factors
,”
ASME J. Electrochem. Energy Convers. Storage
,
19
(
2
), p.
021006
.
32.
Veerman
,
J.
,
Saakes
,
M.
,
Metz
,
S. J.
, and
Harmsen
,
G. J.
,
2010
, “
Electrical Power From Sea and River Water by Reverse Electrodialysis: A First Step From the Laboratory to a Real Power Plant
,”
Environ. Sci. Technol.
,
44
(
23
), pp.
9207
9212
.
You do not currently have access to this content.