Abstract

We successfully achieved surface modification of Si at a low temperature (150 °C) by using citric acid and ascorbic acid as surface modifiers and enhanced the electrochemical performance of a Si-based anode. A simple planetary ball-milling process followed by heat treatment over a range of temperatures (150–500 °C) was used to carry out the surface modification. This important investigation confirmed that the heat treatment temperature significantly affected the molecular structure in the modification layer, and its thickness led to a higher discharge capacity for low-temperature-modified Si compared to that in other series of high-temperature-annealed samples. Among all the surface-modified Si samples, the electrochemical performance using the M-Si 150 °C as the anode material achieved an excellent capacity of 1787 mAh g−1 after 100 charge/discharge cycles with a 75.8% retention. The same device delivered excellent rate capability, with a capacity of ∼1012 mAh g−1 (1 C) and 593 mAh g−1 (2 C) at the high-current rate. The capacity regained to ∼2012 mAh g−1 with the reversal of the current rate to 0.1 C, with a very high retention of 103%, indicating significantly enhanced strength of the modified Si anode in a lithium-ion battery.

References

1.
Kim
,
T.
,
Song
,
W.
,
Son
,
D.-Y.
,
Ono
,
L. K.
, and
Qi
,
Y.
,
2019
, “
Lithium-Ion Batteries: Outlook on Present, Future, and Hybridized Technologies
,”
J. Mater. Chem. A
,
7
(
7
), pp.
2942
2964
.
2.
Chan
,
C. K.
,
Peng
,
H.
,
Liu
,
G.
,
McIlwrath
,
K.
,
Zhang
,
X. F.
,
Huggins
,
R. A.
, and
Cui
,
Y.
,
2008
, “
High-Performance Lithium Battery Anodes Using Silicon Nanowires
,”
Nat. Nanotechnol.
,
3
(
1
), pp.
31
35
.
3.
Park
,
M.-H.
,
Kim
,
M. G.
,
Joo
,
J.
,
Kim
,
K.
,
Kim
,
J.
,
Ahn
,
S.
,
Cui
,
Y.
, and
Cho
,
J.
,
2009
, “
Silicon Nanotube Battery Anodes
,”
Nano Lett.
,
9
(
11
), pp.
3844
3847
.
4.
Cho
,
J.
,
2010
, “
Porous Si Anode Materials for Lithium Rechargeable Batteries
,”
J. Mater. Chem.
,
20
(
20
), pp.
4009
4014
.
5.
Foss
,
C. E. L.
,
Müssig
,
S.
,
Svensson
,
A. M.
,
Vie
,
P. J.
,
Ulvestad
,
A.
,
Mæhlen
,
J. P.
, and
Koposov
,
A. Y.
,
2020
, “
Anodes for Li-Ion Batteries Prepared From Microcrystalline Silicon and Enabled by Binder’s Chemistry and Pseudo-Self-Healing
,”
Sci. Rep.
,
10
(
1
), pp.
1
8
.
6.
Wu
,
H.
, and
Cui
,
Y.
,
2012
, “
Designing Nanostructured Si Anodes for High Energy Lithium Ion Batteries
,”
Nano Today
,
7
(
5
), pp.
414
429
.
7.
Gu
,
M.
,
He
,
Y.
,
Zheng
,
J.
, and
Wang
,
C.
,
2015
, “
Nanoscale Silicon As Anode for Li-Ion Batteries: The Fundamentals, Promises, and Challenges
,”
Nano Energy
,
17
, pp.
366
383
.
8.
Shen
,
X.
,
Tian
,
Z.
,
Fan
,
R.
,
Shao
,
L.
,
Zhang
,
D.
,
Cao
,
G.
,
Kou
,
L.
, and
Bai
,
Y.
,
2018
, “
Research Progress on Silicon/Carbon Composite Anode Materials for Lithium-Ion Battery
,”
J. Energy Chem.
,
27
(
4
), pp.
1067
1090
.
9.
Son
,
S. B.
,
Kappes
,
B.
, and
Ban
,
C.
,
2015
, “
Surface Modification of Silicon Anodes for Durable and High-Energy Lithium-Ion Batteries
,”
Isr. J. Chem.
,
55
(
5
), pp.
558
569
.
10.
Chen
,
M.
,
Zhou
,
Q.
,
Zai
,
J.
,
Iqbal
,
A.
,
Tsega
,
T.
,
Dong
,
B.
,
Liu
,
X.
,
Zhang
,
Y.
,
Yan
,
C.
, and
Zhao
,
L.
,
2021
, “
High Power and Stable P-Doped Yolk-Shell Structured Si@ C Anode Simultaneously Enhancing Conductivity and Li+ Diffusion Kinetics
,”
Nano Res.
,
14
(
4
), pp.
1004
1011
.
11.
Chung
,
W.-Y.
,
Brahma
,
S.
,
Hou
,
S.-C.
,
Chang
,
C.-C.
, and
Huang
,
J.-L.
,
2021
, “
Petroleum Waste Hydrocarbon Resin As a Carbon Source Modified on a Si Composite As a Superior Anode Material in Lithium Ion Batteries
,”
Mater. Chem. Phys.
,
259
, p.
124011
.
12.
Wu
,
F.
,
Wang
,
H.
,
Shi
,
J.
,
Yan
,
Z.
,
Song
,
S.
,
Peng
,
B.
,
Zhang
,
X.
, and
Xiang
,
Y.
,
2018
, “
Surface Modification of Silicon Nanoparticles by an “Ink” Layer for Advanced Lithium Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
10
(
23
), pp.
19639
19648
.
13.
Li
,
C.
,
Shi
,
T.
,
Li
,
D.
,
Yoshitake
,
H.
, and
Wang
,
H.
,
2016
, “
Effect of Surface Modification on Electrochemical Performance of Nano-Sized Si As an Anode Material for Li-Ion Batteries
,”
RSC Adv.
,
6
(
41
), pp.
34715
34723
.
14.
Hou
,
S.-C.
,
Su
,
Y.-F.
,
Chang
,
C.-C.
,
Hu
,
C.-W.
,
Chen
,
T.-Y.
,
Yang
,
S.-M.
, and
Huang
,
J.-L.
,
2017
, “
The Synergistic Effects of Combining the High Energy Mechanical Milling and Wet Milling on Si Negative Electrode Materials for Lithium Ion Battery
,”
J. Power Sources
,
349
, pp.
111
120
.
15.
Grill
,
A.
, and
Neumayer
,
D. A.
,
2003
, “
Structure of Low Dielectric Constant to Extreme Low Dielectric Constant SiCOH Films: Fourier Transform Infrared Spectroscopy Characterization
,”
J. Appl. Phys.
,
94
(
10
), pp.
6697
6707
.
16.
Song
,
J.
,
Huang
,
R.
,
Zhang
,
Y.
,
Lin
,
Z.
,
Zhang
,
W.
,
Li
,
H.
,
Song
,
C.
,
Guo
,
Y.
, and
Lin
,
Z.
,
2019
, “
Effect of Nitrogen Doping on the Photoluminescence of Amorphous Silicon Oxycarbide Films
,”
Micromachines
,
10
(
10
), p.
649
.
17.
Răcuciu
,
M.
,
Creangă
,
D.
, and
Airinei
,
A.
,
2006
, “
Citric-Acid-Coated Magnetite Nanoparticles for Biological Applications
,”
Eur. Phys. J. E
,
21
(
2
), pp.
117
121
.
18.
Sreeja
,
V.
,
Jayaprabha
,
K.
, and
Joy
,
P.
,
2015
, “
Water-Dispersible Ascorbic-Acid-Coated Magnetite Nanoparticles for Contrast Enhancement in MRI
,”
Appl. Nanosci.
,
5
(
4
), pp.
435
441
.
19.
Vernin
,
G.
,
Chakib
,
S.
,
Rogacheva
,
S. M.
,
Obretenov
,
T. D.
, and
Párkányi
,
C.
,
1997
, “
Thermal Decomposition of Ascorbic Acid
,”
Carbohydr. Res.
,
305
(
1
), pp.
1
15
.
20.
Dheyab
,
M. A.
,
Aziz
,
A. A.
,
Jameel
,
M. S.
,
Noqta
,
O. A.
,
Khaniabadi
,
P. M.
, and
Mehrdel
,
B.
,
2020
, “
Simple Rapid Stabilization Method Through Citric Acid Modification for Magnetite Nanoparticles
,”
Sci. Rep.
,
10
(
1
), pp.
1
8
.
21.
Yubero
,
F.
,
Barranco
,
A.
,
Mejíás
,
J.
,
Espinos
,
J.
, and
González-Elipe
,
A.
,
2000
, “
Spectroscopic Characterisation and Chemical Reactivity of Silicon Monoxide Layers Deposited on Cu (100)
,”
Surf. Sci.
,
458
(
1–3
), pp.
229
238
.
22.
Wang
,
D.
,
Gao
,
M.
,
Pan
,
H.
,
Wang
,
J.
, and
Liu
,
Y.
,
2014
, “
High Performance Amorphous-Si@SiOx/C Composite Anode Materials for Li-Ion Batteries Derived From Ball-Milling and In Situ Carbonization
,”
J. Power Sources
,
256
, pp.
190
199
.
23.
Halim
,
M.
,
Liu
,
G.
,
Ardhi
,
R. E. A.
,
Hudaya
,
C.
,
Wijaya
,
O.
,
Lee
,
S.-H.
,
Kim
,
A.-Y.
, and
Lee
,
J. K.
,
2017
, “
Pseudocapacitive Characteristics of Low-Carbon Silicon Oxycarbide for Lithium-Ion Capacitors
,”
ACS Appl. Mater. Interfaces
,
9
(
24
), pp.
20566
20576
.
24.
Wu
,
Y.-Z.
,
Brahma
,
S.
,
Weng
,
S.-C.
,
Chang
,
C.-C.
, and
Huang
,
J.-L.
,
2020
, “
Reduced Graphene Oxide (RGO)-SnOx (x = 0, 1, 2) Nanocomposite As High Performance Anode Material for Lithium-Ion Batteries
,”
J. Alloys Compd.
,
818
, p.
152889
.
You do not currently have access to this content.