In this research, a system-level dynamic model accounting for the phase change effect is developed for polymer electrolyte fuel cells (PEMFCs). This model can illustrate the complicated transient behavior of temperature, gas flow, phase change in the anode and cathode channels, and membrane humidification under operating conditions. Simulation indicates that vapor in the cathode channel is more likely to be in the over saturated state and phase change (condensation under large load current situation) then takes place, which leads to higher temperature at cathode channel due to latent heat generation. In the anode channel, on the other hand, the phase change is less likely to occur even if the inlet hydrogen is humidified with a high relative humidity value. The model is partially validated using the experimental data from open literature. A series of analyses are carried out to investigate the underlying physical mechanisms. This model can be used in the optimal design and dynamic control of PEMFCs.

1.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1992, “
A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
139
(
9
), pp.
2477
2491
.
2.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
138
(
8
), pp.
2334
2342
.
3.
Nguyen
,
T. V.
, and
White
,
R. E.
, 1993, “
A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
140
(
8
), pp.
2178
2186
.
4.
Springer
,
T. E.
,
Wilson
,
M. S.
, and
Gottesfeld
,
S.
, 1993, “
Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
140
(
12
), pp.
3513
3526
.
5.
Wang
,
Z. H.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2001, “
Two-Phase Flow and Transport in the Air Cathode of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
90
, pp.
40
50
.
6.
You
,
L.
, and
Liu
,
H.
, 2002, “
A Two-Phase Flow and Transport Model for the Cathode of PEM Fuel Cells
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
2277
2287
.
7.
Amphlett
,
J. C.
,
Mann
,
R. F.
,
Peppley
,
B. A.
,
Roberge
,
P. R.
, and
Rodrigues
,
A.
, 1996, “
A Model Predicting Transient Response of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
61
, pp.
183
188
.
8.
Pukrushpan
,
J. T.
,
Peng
,
H.
, and
Stefanopoulou
,
A. G.
, 2004, “
Control-Oriented Modeling and Analysis for Automotive Fuel Cell Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
126
, pp.
14
25
.
9.
Xue
,
X.
,
Tang
,
J.
,
Smirnova
,
A.
,
England
,
R.
, and
Sammes
,
N.
, 2004, “
System Level Lumped-Parameter Dynamic Modeling of PEM Fuel Cell
,”
J. Power Sources
0378-7753,
133
, pp.
188
204
.
10.
Sonntag
,
R. E.
,
Borgnakke
,
C.
, and
Van Wylen
,
G. J.
, 2003,
Fundamentals of Thermodynamics
6th ed.
,
Wiley
, New York.
11.
Dutta
,
S.
,
Shimpalee
,
S.
, and
Van Zee
,
J. W.
, 2001, “
Numerical Predication of Mass-Exchange Between Cathode and Anode Channels in a PEM Fuel Cell
,”
Indian J. Pure Appl. Phys.
0019-5596,
44
, pp.
2029
2042
.
12.
Amphlett
,
J. C.
,
Baumert
,
R. M.
,
Mann
,
R. F.
,
Peppley
,
B. A.
,
Roberge
,
P. R.
, and
Harris
,
T. J.
, 1995, “
Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell, II. Empirical Model Development
,”
J. Electrochem. Soc.
0013-4651,
142
(
1
), pp.
10
15
.
13.
Berg
,
P.
,
Promislow
,
K.
,
Pierre
,
J. S.
,
Stumper
,
J.
, and
Wetton
,
B.
, 2004, “
Water Management in PEM Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
150
(
3
), pp.
341
353
.
You do not currently have access to this content.