This paper presents a review of the current situation in the computational fluid dynamics (CFD) modeling of fuel cells and highlights the significant challenges that lie ahead in the development of a comprehensive CFD model for fuel cell applications. The paper focuses on the issues concerned with solid oxide fuel cells and proton exchange membrane fuel cells because these are the two most poplar and probably the most promising types of fuel cells for both stationary and transport applications. However, the general principles presented in this paper are applicable to all types of fuel cells.

1.
George
,
R. A.
, 2000, “
Status of Tubular SOFC Field Unit Demonstrations
,”
J. Power Sources
0378-7753,
86
, pp.
134
139
.
2.
Hoogers
,
G.
, 2003,
Fuel Cell Technology Handbook
,
CRC Press
, Boca Raton.
3.
Singhal
,
S. C.
, and
Kendall
,
K.
, 2003,
High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications
,
Elsevier
, New York.
4.
Veyo
,
S. E.
,
Shockling
,
L. A.
,
Dederer
,
J. T.
,
Gillett
,
J. E.
, and
Lundberg
,
W. Y.
, 2002, “
Tubular Solid Oxide Fuel Cell-Gas Turbine Hybrid Cycle Power Systems: Status
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
, pp.
845
849
.
5.
Bernadi
,
D. M.
, and
Verbrugge
,
M. W.
, 1992, “
A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
139
(
9
), pp.
2477
2491
.
6.
Bevers
,
D.
,
Woehr
,
M.
,
Yasuda
,
K.
, and
Oguro
,
K.
, 1997, “
Simulation of a Polymer Electrolyte Fuel Cell Electrode
,”
J. Appl. Electrochem.
0021-891X,
27
, pp.
1254
1264
.
7.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
138
(
8
), pp.
2334
2342
.
8.
Woehr
,
M.
,
Bolwin
,
K.
,
Schnurnberger
,
W.
,
Fischer
,
M.
,
Neubrand
,
W.
, and
Eigenberger
,
G.
, 1998, “
Dynamic Modeling and Simulation of a Polymer Membrane Fuel Cell Including Mass Transport Limitations
,”
Int. J. Hydrogen Energy
0360-3199,
23
(
3
), pp.
213
218
.
9.
Autissier
,
N.
,
Larrain
,
D.
,
Van herle
,
J.
, and
Favrat
,
D.
, 2004, “
CFD Simulation Tool for Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
131
, pp.
313
319
.
10.
Berning
,
T.
, and
Djilali
,
N.
, 2003, “
Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell
,”
J. Power Sources
0378-7753,
124
, pp.
440
452
.
11.
Gurau
,
V.
,
Liu
,
H.
, and
Kakac
,
S.
, 1998, “
Two-Dimensional Model for Proton Exchange Membrane Fuel Cells
,”
AIChE J.
0001-1541,
44
(
11
), pp.
2410
2422
.
12.
He
,
W.
, and
Chen
,
Q.
, 1995, “
Three-Dimensional Simulation of a Molten Carbonate Fuel Cell Stack Using Computational Fluid Dynamics Technique
,”
J. Power Sources
0378-7753,
55
, pp.
25
32
.
13.
He
,
W.
,
Yi
,
J. S.
, and
Nguyen
,
T. V.
, 2000, “
Two-Phase Flow Model of the Cathode of PEM Fuel Cells Using Interdigitated Flow Fields
,”
AIChE J.
0001-1541,
46
(
10
), pp.
2053
2064
.
14.
Um
,
S.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2000, “
Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
147
(
12
), pp.
4485
4493
.
15.
Beale
,
S. B.
,
Lin
,
Y.
,
Zhubrin
,
S. V.
, and
Dong
,
W.
, 2003, “
Computer Methods for Performance Prediction in Fuel Cells
,”
J. Power Sources
0378-7753,
118
, pp.
79
85
.
16.
Costamagna
,
P.
, and
Srinivasan
, 2001, “
Quantum Jumps in the PEMFC Science and Technology from the 1960s to the Year 2000: Part I. Fundamental Scientific Aspects
,”
J. Power Sources
0378-7753,
102
, pp.
242
252
.
17.
Costamagna
,
P.
, and
Srinivasan
,
S.
, 2001, “
Quantum Jumps in the PEMFC Science and Technology From the 1960s to the Year 2000: Part II. Engineering, Technology Development and Application Aspects
,”
J. Power Sources
0378-7753,
102
, pp.
253
269
.
18.
Kee
,
R. J.
,
Zhu
,
H.
, and
Goodwin
,
D. G.
, 2004, “
Solid-Oxide Fuel Cells With Hydrocarbon Fuels
,”
30th Symp. (Int.) on Combustion
,
The Combustion Institute
,
70
, pp.
101
105
.
19.
Litster
,
S.
, and
McLean
,
G.
, 2004, “
PEM Fuel Cell Electrodes
,”
J. Power Sources
0378-7753,
130
, pp.
61
76
.
20.
Mehta
,
V.
, and
Cooper
,
J. S.
, 2003, “
Review and Analysis of PEM Fuel Cell Design and Manufacturing
,”
J. Power Sources
0378-7753,
114
, pp.
32
53
.
21.
Perry
,
M. L.
, and
Fuller
,
T. F.
, 2002, “
A Historical Perspective of Fuel Cell Technology in the 20th Century
,”
J. Electrochem. Soc.
0013-4651,
149
(
7
), pp.
S59
S67
.
22.
Larminie
,
J.
, and
Dicks
,
A.
, 2000, “
Fuel Cell Systems Explained
,”
Wiley
, Chichester.
23.
Mogensen
,
M.
, and
Kammer
,
K.
, 2003, “
Conversion of Hydrocarbons in Solid Oxide Fuel Cells
,”
Annu. Rev. Mater. Res.
1531-7331,
33
, pp.
321
331
.
24.
Nakagawa
,
N.
,
Sagara
,
H.
, and
Kato
,
K.
, 2001, “
Catalytic Activity of Ni±YSZ±CeO2 Anode for the Steam Reforming of Methane in a Direct Internal-Reforming Solid Oxide Fuel Cell
,”
J. Power Sources
0378-7753,
92
, pp.
88
94
.
25.
Ormerod
,
R. M.
, 2003, “
Solid Oxide Fuel Cells
,”
Chem. Soc. Rev.
0306-0012,
32
, pp.
17
28
.
26.
Zhan
,
Z.
,
Liu
,
J.
, and
Barnett
,
S. A.
, 2004, “
Operation of Anode-Supported Solid Oxide Fuel Cells on Propane-Air Fuel Mixtures
,”
Appl. Catal., A
0926-860X,
262
(
2
), pp.
255
259
.
27.
Berning
,
T.
,
Lu
,
D. M.
, and
Djilali
,
N.
, 2002, “
Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell
,”
J. Power Sources
0378-7753,
106
, pp.
284
294
.
28.
You
,
L.
, and
Liu
,
H.
, 2002, “
A Two-Phase Flow and Transport Model for the Cathode of PEM Fuel Cells
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
2277
2287
.
29.
Dutta
,
S.
,
Shimpalee
,
S.
, and
Van Zee
,
J. W.
, 2001, “
Numerical Prediction of Mass-Exchange Between Cathode and Anode Channels in a PEM Fuel Cell
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
2029
2042
.
30.
Fowler
,
M. W.
,
Mann
,
R. F.
,
Amphlett
,
J. C.
,
Peppley
,
B. A.
, and
Roberge
,
P. R.
, 2002, “
Incorporation of Voltage Degradation into a Generalised Steady State Electrochemical Model for a PEM Fuel Cell
,”
J. Power Sources
0378-7753,
106
, pp.
274
283
.
31.
Gunji
,
A.
,
Wenb
,
C.
,
Otomoc
,
J.
,
Kobayashi
,
T.
,
Ukai
,
K.
,
Mizutani
,
Y.
, and
Takahashi
,
H.
, 2004, “
Carbon Deposition Behavior on Ni–ScSZ Anodes for Internal Reforming Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
131
, pp.
285
288
.
32.
Bard
,
A. J.
, and
Faulkner
,
L. R.
, 1980,
Electrochemical Methods
,
Wiley
, New York.
33.
Meng
,
H.
, and
Wang
,
C. Y.
, 2004, “
Electron Transport in PEFCs
,”
J. Electrochem. Soc.
0013-4651,
151
(
3
), pp.
A358
367
.
34.
Nguyen
,
P. T.
,
Berning
,
T.
, and
Djilali
,
N.
, 2004, “
Computational Model of a PEM Fuel Cell With Serpentine Gas Flow Channels
,”
J. Power Sources
0378-7753,
130
, pp.
149
157
.
35.
Lampinen
,
M. J.
, and
Fomino
,
M.
, 1993, “
Analysis of Free Energy and Entropy Changes for Half-Cell Reactions
,”
J. Electrochem. Soc.
0013-4651,
140
(
12
), pp.
3537
3546
.
36.
Um
,
S.
,
Wang
,
C. Y.
, and
Chenb
,
K. S.
, 2000, “
Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
147
(
12
), pp.
4485
4493
.
37.
Costamagna
,
P.
, and
Honegger
,
K.
, 1998, “
Modeling at Solid Oxide Heat Exchanger Integrated Stacks and Simulation at High Fuel Utilization
,”
J. Electrochem. Soc.
0013-4651,
145
(
11
), pp.
3995
4007
.
38.
Gurau
,
V.
,
Barbir
,
F.
, and
Liu
,
H.
, 2000, “
An Analytical Solution of a Half-Cell Model for PEM Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
147
(
7
), pp.
2468
2477
.
39.
Li
,
P. W.
, and
Chyu
,
M. K.
, 2003, “
Simulation of the Chemical/Electrochemical Reactions and Heat/Mass Transfer for a Tubular SOFC in a Stack
,”
J. Power Sources
0378-7753,
124
, pp.
487
498
.
40.
Mann
,
R. F.
,
Amphlett
,
J. C.
,
Hooper
,
M. A. I.
,
Jensen
,
H. M.
,
Peppley
,
B. A.
, and
Roberge
,
P. R.
, 2000, “
Development and Application of a Generalized Steady-State Electrochemical Model for a PEM Fuel Cell
,”
J. Power Sources
0378-7753,
86
, pp.
173
180
.
41.
Yuan
,
J.
,
Rokni
,
M.
, and
Sundén
,
B.
, 2003, “
Three-dimensional Computational Analysis of Gas and Heat Transport Phenomena in Ducts Relevant for Anode-Supported Solid Oxide Fuel Cells
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
809
821
.
42.
Recknagle
,
K. P.
,
Williford
,
R. E.
,
Chick
,
L. A.
,
Rector
,
D. R.
, and
Khaleel
,
M. A.
, 2003, “
Three-Dimensional Thermo-Fluid Electrochemical Modeling of Planar SOFC Stacks
,”
J. Power Sources
0378-7753,
113
, pp.
109
114
.
43.
Lin
,
Y.
, and
Beale
,
S.
, 2003, “
Performance Prediction in Solid Oxide Fuel Cells
,”
Proc. of Third Int. Conf. on CFD in the Minerals and Process Industries
,
CSIRO
, Melbourne, Australia, pp.
613
618
.
44.
Nagata
,
S.
,
Momma
,
A.
,
Kato
,
T.
, and
Kasuga
,
Y.
, 2001, “
Numerical Analysis of Output Characteristics of Tubular SOFC With Internal Reformer
,”
J. Power Sources
0378-7753,
101
, pp.
60
71
.
45.
Ticianelli
,
E. A.
,
Derouin
,
C. R.
,
Redondo
,
A.
, and
Srinivasan
,
S.
, 1988 “
Methods to Advance Technology of Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
135
(
9
), pp.
2209
2214
.
46.
Berg
,
P.
,
Promislow
,
K.
,
Pierre
,
J. S.
,
Stumper
,
J.
, and
Wetton
,
B.
, 2004, “
Water Management in PEM Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
151
(
3
), pp.
A341
A353
.
47.
Fuller
,
T. F.
, and
Newman
,
J.
, 1993, “
Water and Thermal Management in Solid-Polymer-Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
140
, pp.
1218
1225
.
48.
Yi
,
J. S.
, and
Nguyen
,
T. V.
, 1998, “
An Along the Channel Model for Proton Exchange Membrane Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
145
, pp.
1149
1159
.
49.
Wang
,
Z. H.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2001, “
Two-Phase Flow and Transport in the Air Cathode of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
94
, pp.
40
50
.
50.
Li
,
S.
, and
Becker
,
U.
, 2004, “
A Three Dimensional CFD Model for PEMFC
,”
2nd ASME Fuel Cell Conf., Rochester, NY, June 14–16
.
51.
Nam
,
J. H.
, and
Kaviany
,
M.
, 2003, “
Effective Diffusivity and Water-Saturation Distribution in Single- and Two-Layer PEMFC Diffusion Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
4595
4611
.
52.
Ingham
,
D. B.
, and
Pop
,
I.
, 1998,
Transport Phenomena in Porous Media
,
Pergamon
, Oxford.
53.
Ingham
,
D. B.
, and
Pop
,
I.
, 2002,
Transport Phenomena in Porous Media: Volume 2
,
Pergamon Press
, Oxford.
54.
Ma
,
L.
,
Ingham
,
D. B.
and
Pourkashanian
,
M. C.
, 2005, “
Application of Fluid Flows Through Porous Media in Fuel Cells
,”
Transport Phenomena in Porous Media
, Ed:
D. B.
Ingham
, and
I.
Pop
,
Elsevier
, Wiley, England, Vol.
3
(in press).
55.
Alazmi
,
B.
, and
Vafai
,
K.
, 2001, “
Analysis of Fluid Flow and Heat Transfer Interfacial Conditions Between a Porous Medium and a Fluid Layer
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
1735
1749
.
56.
Stockie
,
J. M.
,
Promislow
,
K.
, and
Wetton
,
B. R.
, 2003, “
A Finite Volume Method for Multicomponent Gas Transport in a Porous Fuel Cell Electrode
,”
Int. J. Numer. Methods Fluids
0271-2091,
41
, pp.
577
599
.
57.
Tayler
,
R.
, and
Krishma
,
R.
, 1993,
Multicomponent Mass Transfer
,
Wiley
, New York.
58.
Eikerling
,
M.
,
Kharkats
,
Y. I.
,
Kornyshev
,
A. A.
, and
Volfkovich
,
Y. M.
, 1998, “
Phenomenological Theory of Electro-osmotic Effect and Water Management in Polymer Electrolyte Proton-Conducting Membranes
,”
J. Electrochem. Soc.
0013-4651,
145
(
2
), pp.
2684
2698
.
You do not currently have access to this content.