This paper presents a review of the current situation in the computational fluid dynamics (CFD) modeling of fuel cells and highlights the significant challenges that lie ahead in the development of a comprehensive CFD model for fuel cell applications. The paper focuses on the issues concerned with solid oxide fuel cells and proton exchange membrane fuel cells because these are the two most poplar and probably the most promising types of fuel cells for both stationary and transport applications. However, the general principles presented in this paper are applicable to all types of fuel cells.
Issue Section:
Research Papers
1.
George
, R. A.
, 2000, “Status of Tubular SOFC Field Unit Demonstrations
,” J. Power Sources
0378-7753, 86
, pp. 134
–139
.2.
Hoogers
, G.
, 2003, Fuel Cell Technology Handbook
, CRC Press
, Boca Raton.3.
Singhal
, S. C.
, and Kendall
, K.
, 2003, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications
, Elsevier
, New York.4.
Veyo
, S. E.
, Shockling
, L. A.
, Dederer
, J. T.
, Gillett
, J. E.
, and Lundberg
, W. Y.
, 2002, “Tubular Solid Oxide Fuel Cell-Gas Turbine Hybrid Cycle Power Systems: Status
,” ASME J. Eng. Gas Turbines Power
0742-4795, 124
, pp. 845
–849
.5.
Bernadi
, D. M.
, and Verbrugge
, M. W.
, 1992, “A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell
,” J. Electrochem. Soc.
0013-4651, 139
(9
), pp. 2477
–2491
.6.
Bevers
, D.
, Woehr
, M.
, Yasuda
, K.
, and Oguro
, K.
, 1997, “Simulation of a Polymer Electrolyte Fuel Cell Electrode
,” J. Appl. Electrochem.
0021-891X, 27
, pp. 1254
–1264
.7.
Springer
, T. E.
, Zawodzinski
, T. A.
, and Gottesfeld
, S.
, 1991, “Polymer Electrolyte Fuel Cell Model
,” J. Electrochem. Soc.
0013-4651, 138
(8
), pp. 2334
–2342
.8.
Woehr
, M.
, Bolwin
, K.
, Schnurnberger
, W.
, Fischer
, M.
, Neubrand
, W.
, and Eigenberger
, G.
, 1998, “Dynamic Modeling and Simulation of a Polymer Membrane Fuel Cell Including Mass Transport Limitations
,” Int. J. Hydrogen Energy
0360-3199, 23
(3
), pp. 213
–218
.9.
Autissier
, N.
, Larrain
, D.
, Van herle
, J.
, and Favrat
, D.
, 2004, “CFD Simulation Tool for Solid Oxide Fuel Cells
,” J. Power Sources
0378-7753, 131
, pp. 313
–319
.10.
Berning
, T.
, and Djilali
, N.
, 2003, “Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell
,” J. Power Sources
0378-7753, 124
, pp. 440
–452
.11.
Gurau
, V.
, Liu
, H.
, and Kakac
, S.
, 1998, “Two-Dimensional Model for Proton Exchange Membrane Fuel Cells
,” AIChE J.
0001-1541, 44
(11
), pp. 2410
–2422
.12.
He
, W.
, and Chen
, Q.
, 1995, “Three-Dimensional Simulation of a Molten Carbonate Fuel Cell Stack Using Computational Fluid Dynamics Technique
,” J. Power Sources
0378-7753, 55
, pp. 25
–32
.13.
He
, W.
, Yi
, J. S.
, and Nguyen
, T. V.
, 2000, “Two-Phase Flow Model of the Cathode of PEM Fuel Cells Using Interdigitated Flow Fields
,” AIChE J.
0001-1541, 46
(10
), pp. 2053
–2064
.14.
Um
, S.
, Wang
, C. Y.
, and Chen
, K. S.
, 2000, “Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells
,” J. Electrochem. Soc.
0013-4651, 147
(12
), pp. 4485
–4493
.15.
Beale
, S. B.
, Lin
, Y.
, Zhubrin
, S. V.
, and Dong
, W.
, 2003, “Computer Methods for Performance Prediction in Fuel Cells
,” J. Power Sources
0378-7753, 118
, pp. 79
–85
.16.
Costamagna
, P.
, and Srinivasan
, 2001, “Quantum Jumps in the PEMFC Science and Technology from the 1960s to the Year 2000: Part I. Fundamental Scientific Aspects
,” J. Power Sources
0378-7753, 102
, pp. 242
–252
.17.
Costamagna
, P.
, and Srinivasan
, S.
, 2001, “Quantum Jumps in the PEMFC Science and Technology From the 1960s to the Year 2000: Part II. Engineering, Technology Development and Application Aspects
,” J. Power Sources
0378-7753, 102
, pp. 253
–269
.18.
Kee
, R. J.
, Zhu
, H.
, and Goodwin
, D. G.
, 2004, “Solid-Oxide Fuel Cells With Hydrocarbon Fuels
,” 30th Symp. (Int.) on Combustion
, The Combustion Institute
, 70
, pp. 101
–105
.19.
Litster
, S.
, and McLean
, G.
, 2004, “PEM Fuel Cell Electrodes
,” J. Power Sources
0378-7753, 130
, pp. 61
–76
.20.
Mehta
, V.
, and Cooper
, J. S.
, 2003, “Review and Analysis of PEM Fuel Cell Design and Manufacturing
,” J. Power Sources
0378-7753, 114
, pp. 32
–53
.21.
Perry
, M. L.
, and Fuller
, T. F.
, 2002, “A Historical Perspective of Fuel Cell Technology in the 20th Century
,” J. Electrochem. Soc.
0013-4651, 149
(7
), pp. S59
–S67
.22.
Larminie
, J.
, and Dicks
, A.
, 2000, “Fuel Cell Systems Explained
,” Wiley
, Chichester.23.
Mogensen
, M.
, and Kammer
, K.
, 2003, “Conversion of Hydrocarbons in Solid Oxide Fuel Cells
,” Annu. Rev. Mater. Res.
1531-7331, 33
, pp. 321
–331
.24.
Nakagawa
, N.
, Sagara
, H.
, and Kato
, K.
, 2001, “Catalytic Activity of Ni±YSZ±CeO2 Anode for the Steam Reforming of Methane in a Direct Internal-Reforming Solid Oxide Fuel Cell
,” J. Power Sources
0378-7753, 92
, pp. 88
–94
.25.
Ormerod
, R. M.
, 2003, “Solid Oxide Fuel Cells
,” Chem. Soc. Rev.
0306-0012, 32
, pp. 17
–28
.26.
Zhan
, Z.
, Liu
, J.
, and Barnett
, S. A.
, 2004, “Operation of Anode-Supported Solid Oxide Fuel Cells on Propane-Air Fuel Mixtures
,” Appl. Catal., A
0926-860X, 262
(2
), pp. 255
–259
.27.
Berning
, T.
, Lu
, D. M.
, and Djilali
, N.
, 2002, “Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell
,” J. Power Sources
0378-7753, 106
, pp. 284
–294
.28.
You
, L.
, and Liu
, H.
, 2002, “A Two-Phase Flow and Transport Model for the Cathode of PEM Fuel Cells
,” Int. J. Heat Mass Transfer
0017-9310, 45
, pp. 2277
–2287
.29.
Dutta
, S.
, Shimpalee
, S.
, and Van Zee
, J. W.
, 2001, “Numerical Prediction of Mass-Exchange Between Cathode and Anode Channels in a PEM Fuel Cell
,” Int. J. Heat Mass Transfer
0017-9310, 44
, pp. 2029
–2042
.30.
Fowler
, M. W.
, Mann
, R. F.
, Amphlett
, J. C.
, Peppley
, B. A.
, and Roberge
, P. R.
, 2002, “Incorporation of Voltage Degradation into a Generalised Steady State Electrochemical Model for a PEM Fuel Cell
,” J. Power Sources
0378-7753, 106
, pp. 274
–283
.31.
Gunji
, A.
, Wenb
, C.
, Otomoc
, J.
, Kobayashi
, T.
, Ukai
, K.
, Mizutani
, Y.
, and Takahashi
, H.
, 2004, “Carbon Deposition Behavior on Ni–ScSZ Anodes for Internal Reforming Solid Oxide Fuel Cells
,” J. Power Sources
0378-7753, 131
, pp. 285
–288
.32.
Bard
, A. J.
, and Faulkner
, L. R.
, 1980, Electrochemical Methods
, Wiley
, New York.33.
Meng
, H.
, and Wang
, C. Y.
, 2004, “Electron Transport in PEFCs
,” J. Electrochem. Soc.
0013-4651, 151
(3
), pp. A358
–367
.34.
Nguyen
, P. T.
, Berning
, T.
, and Djilali
, N.
, 2004, “Computational Model of a PEM Fuel Cell With Serpentine Gas Flow Channels
,” J. Power Sources
0378-7753, 130
, pp. 149
–157
.35.
Lampinen
, M. J.
, and Fomino
, M.
, 1993, “Analysis of Free Energy and Entropy Changes for Half-Cell Reactions
,” J. Electrochem. Soc.
0013-4651, 140
(12
), pp. 3537
–3546
.36.
Um
, S.
, Wang
, C. Y.
, and Chenb
, K. S.
, 2000, “Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells
,” J. Electrochem. Soc.
0013-4651, 147
(12
), pp. 4485
–4493
.37.
Costamagna
, P.
, and Honegger
, K.
, 1998, “Modeling at Solid Oxide Heat Exchanger Integrated Stacks and Simulation at High Fuel Utilization
,” J. Electrochem. Soc.
0013-4651, 145
(11
), pp. 3995
–4007
.38.
Gurau
, V.
, Barbir
, F.
, and Liu
, H.
, 2000, “An Analytical Solution of a Half-Cell Model for PEM Fuel Cells
,” J. Electrochem. Soc.
0013-4651, 147
(7
), pp. 2468
–2477
.39.
Li
, P. W.
, and Chyu
, M. K.
, 2003, “Simulation of the Chemical/Electrochemical Reactions and Heat/Mass Transfer for a Tubular SOFC in a Stack
,” J. Power Sources
0378-7753, 124
, pp. 487
–498
.40.
Mann
, R. F.
, Amphlett
, J. C.
, Hooper
, M. A. I.
, Jensen
, H. M.
, Peppley
, B. A.
, and Roberge
, P. R.
, 2000, “Development and Application of a Generalized Steady-State Electrochemical Model for a PEM Fuel Cell
,” J. Power Sources
0378-7753, 86
, pp. 173
–180
.41.
Yuan
, J.
, Rokni
, M.
, and Sundén
, B.
, 2003, “Three-dimensional Computational Analysis of Gas and Heat Transport Phenomena in Ducts Relevant for Anode-Supported Solid Oxide Fuel Cells
,” Int. J. Heat Mass Transfer
0017-9310, 46
, pp. 809
–821
.42.
Recknagle
, K. P.
, Williford
, R. E.
, Chick
, L. A.
, Rector
, D. R.
, and Khaleel
, M. A.
, 2003, “Three-Dimensional Thermo-Fluid Electrochemical Modeling of Planar SOFC Stacks
,” J. Power Sources
0378-7753, 113
, pp. 109
–114
.43.
Lin
, Y.
, and Beale
, S.
, 2003, “Performance Prediction in Solid Oxide Fuel Cells
,” Proc. of Third Int. Conf. on CFD in the Minerals and Process Industries
, CSIRO
, Melbourne, Australia, pp. 613
–618
.44.
Nagata
, S.
, Momma
, A.
, Kato
, T.
, and Kasuga
, Y.
, 2001, “Numerical Analysis of Output Characteristics of Tubular SOFC With Internal Reformer
,” J. Power Sources
0378-7753, 101
, pp. 60
–71
.45.
Ticianelli
, E. A.
, Derouin
, C. R.
, Redondo
, A.
, and Srinivasan
, S.
, 1988 “Methods to Advance Technology of Proton Exchange Membrane Fuel Cells
,” J. Electrochem. Soc.
0013-4651, 135
(9
), pp. 2209
–2214
.46.
Berg
, P.
, Promislow
, K.
, Pierre
, J. S.
, Stumper
, J.
, and Wetton
, B.
, 2004, “Water Management in PEM Fuel Cells
,” J. Electrochem. Soc.
0013-4651, 151
(3
), pp. A341
–A353
.47.
Fuller
, T. F.
, and Newman
, J.
, 1993, “Water and Thermal Management in Solid-Polymer-Electrolyte Fuel Cells
,” J. Electrochem. Soc.
0013-4651, 140
, pp. 1218
–1225
.48.
Yi
, J. S.
, and Nguyen
, T. V.
, 1998, “An Along the Channel Model for Proton Exchange Membrane Fuel Cell
,” J. Electrochem. Soc.
0013-4651, 145
, pp. 1149
–1159
.49.
Wang
, Z. H.
, Wang
, C. Y.
, and Chen
, K. S.
, 2001, “Two-Phase Flow and Transport in the Air Cathode of Proton Exchange Membrane Fuel Cells
,” J. Power Sources
0378-7753, 94
, pp. 40
–50
.50.
Li
, S.
, and Becker
, U.
, 2004, “A Three Dimensional CFD Model for PEMFC
,” 2nd ASME Fuel Cell Conf., Rochester, NY, June 14–16
.51.
Nam
, J. H.
, and Kaviany
, M.
, 2003, “Effective Diffusivity and Water-Saturation Distribution in Single- and Two-Layer PEMFC Diffusion Medium
,” Int. J. Heat Mass Transfer
0017-9310, 46
, pp. 4595
–4611
.52.
Ingham
, D. B.
, and Pop
, I.
, 1998, Transport Phenomena in Porous Media
, Pergamon
, Oxford.53.
Ingham
, D. B.
, and Pop
, I.
, 2002, Transport Phenomena in Porous Media: Volume 2
, Pergamon Press
, Oxford.54.
Ma
, L.
, Ingham
, D. B.
and Pourkashanian
, M. C.
, 2005, “Application of Fluid Flows Through Porous Media in Fuel Cells
,” Transport Phenomena in Porous Media
, Ed: D. B.
Ingham
, and I.
Pop
, Elsevier
, Wiley, England, Vol. 3
(in press).55.
Alazmi
, B.
, and Vafai
, K.
, 2001, “Analysis of Fluid Flow and Heat Transfer Interfacial Conditions Between a Porous Medium and a Fluid Layer
,” Int. J. Heat Mass Transfer
0017-9310, 44
, pp. 1735
–1749
.56.
Stockie
, J. M.
, Promislow
, K.
, and Wetton
, B. R.
, 2003, “A Finite Volume Method for Multicomponent Gas Transport in a Porous Fuel Cell Electrode
,” Int. J. Numer. Methods Fluids
0271-2091, 41
, pp. 577
–599
.57.
Tayler
, R.
, and Krishma
, R.
, 1993, Multicomponent Mass Transfer
, Wiley
, New York.58.
Eikerling
, M.
, Kharkats
, Y. I.
, Kornyshev
, A. A.
, and Volfkovich
, Y. M.
, 1998, “Phenomenological Theory of Electro-osmotic Effect and Water Management in Polymer Electrolyte Proton-Conducting Membranes
,” J. Electrochem. Soc.
0013-4651, 145
(2
), pp. 2684
–2698
.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.