Artificial neural network (ANN) approaches for modeling of proton exchange membrane (PEM) fuel cells have been investigated in this study. This type of data-driven approach is capable of inferring functional relationships among process variables (i.e., cell voltage, current density, feed concentration, airflow rate, etc.) in fuel cell systems. In our simulations, ANN models have shown to be accurate for modeling of fuel cell systems. Specifically, different approaches for ANN, including back-propagation feed-forward networks, and radial basis function networks, were considered. The back-propagation approach with the momentum term gave the best results. A study on the effect of Pt loading on the performance of a PEM fuel cell was conducted, and the simulated results show good agreement with the experimental data. Using the ANN model, an optimization model for determining optimal operating points of a PEM fuel cell has been developed. Results show the ability of the optimizer to capture the optimal operating point. The overall goal is to improve fuel cell system performance through numerical simulations and minimize the trial and error associated with laboratory experiments.

1.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1991, “
Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte
,”
AIChE J.
0001-1541,
37
, pp.
1151
1163
.
2.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1992, “
A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
139
, pp.
2477
2491
.
3.
Springer
,
T. E.
,
Zawodinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
138
, pp.
2334
2342
.
4.
Springer
,
T. E.
,
Wilson
,
M. S.
, and
Gottesfeld
,
S.
, 1993, “
Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
140
, pp.
3513
3526
.
5.
Nguyen
,
T. V.
, and
White
,
R. E.
, 1993, “
A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
140
, pp.
2178
2186
.
6.
Yi
,
J. S.
, and
Nguyen
,
T. V.
, 1998, “
An Along-the-Channel Model for Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
145
, pp.
1149
1159
.
7.
Yi
,
J. S.
, and
Nguyen
,
T. V.
, 1999, “
Multicomponent Transport in Porous Electrodes of Proton Exchange Membrane Fuel Cells Using the Interdigitated Gas Distributors
,”
J. Electrochem. Soc.
0013-4651,
146
, pp.
38
45
.
8.
Um
,
S.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2000, “
Computational Fluid Modeling of Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
147
, pp.
4485
4493
.
9.
Wang
,
Z. H.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2001, “
Two-Phase Flow and Transport in the Air Cathode of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
94
(
1
), pp.
40
50
.
10.
Scott
,
K.
,
Taama
,
W.
, and
Cruickshank
,
J.
, 1997, “
Performance and Modeling of a Direct Methanol Solid Polymer Electrolyte Fuel Cell
,”
J. Power Sources
0378-7753,
65
, pp.
159
171
.
11.
Baxter
,
S. F.
,
Battaglia
,
V. S.
, and
White
,
R. E.
, 1999, “
Methanol Fuel Cell Model: Anode
,”
J. Electrochem. Soc.
0013-4651,
146
(
2
), pp.
437
447
.
12.
Kulikovsky
,
A. A.
,
Divisek
,
J.
, and
Kornyshev
,
A. A.
, 2000, “
Two-Dimensional Simulation of Direct Methanol Fuel Cell. A New (Embedded) Type of Current collector
,”
J. Electrochem. Soc.
0013-4651,
147
, pp.
953
959
.
13.
Kulikovsky
,
A. A.
, 2000, “
Two-Dimensional Numerical modeling of a Direct Methanol Fuel Cell
,”
J. Appl. Electrochem.
0021-891X,
30
, pp.
1005
1014
.
14.
Wang
,
Z. H.
, and
Wang
,
C. Y.
, 2003, “
Mathematical Modeling of Liquid-Feed Direct Methanol Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
150
(
4
), pp.
A508
A519
.
15.
Simpson
,
P. K.
, and Institute of Electrical and Electronics Engineers,
Technical Activities Board
, 1996,
Neural Networks Applications
, New York,
Institute of Electrical and Electronics Engineers
.
16.
Haykin
,
S. S.
, 1999,
Neural Networks: A Comprehensive Foundation
,
Prentice Hall
, Upper Saddle River, N.J.
17.
Rumelhart
,
D. E.
,
Hinton
,
G. E.
, and
Williams
,
R. J.
, 1986, “
Learning Representations by Back-Propagating Errors
,”
Nature (London)
0028-0836,
323
, pp.
533
536
.
18.
Rumelhart
,
D. E.
,
Hinton
,
G. E.
, and
Williams
,
R. J.
, 1986, “
Learning Internal Representations by Error Back Propagation
,” in
Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol 1: Foundations
,
D. E.
Rumelhart
and
J. L.
McClelland
, Eds.,
MIT Press
, Cambridge MA, pp.
318
362
.
20.
Park
,
J.
, and
Sandberg
,
J. W.
, 1991, “
Universal Approximation Using Radial Basis Functions Network
,”
Neural Comput.
0899-7667,
3
, pp.
246
257
.
21.
Edgar
,
T. F.
,
Himmelblau
,
D. M.
, and
Lasdon
,
L. S.
, 2001,
Optimization of Chemical Processes
,
McGraw-Hill
, New York.
22.
Gurau
,
B.
, and
Smotkin
,
E. S.
, 2002, “
Methanol Crossover in Direct Methanol Fuel Cells: A Link Between Power and Energy Density
,”
J. Power Sources
0378-7753,
112
, pp.
339
352
.
23.
Qi
,
Z.
, and
Kaufman
,
A.
, 2003, “
Low Pt Loading High Performance Cathodes for PEM Fuel Cells
,”
J. Power Sources
0378-7753,
113
, pp.
37
43
.
You do not currently have access to this content.