The mass/charge transfer characteristics in a simulated MOLB (mono-block-layer built)-type solid-oxide fuel cells have been studied numerically. The transport phenomena within a linear MOLB module, including flow channels, active porous electrodes, electrolyte, and interconnections, are simulated using the finite volume method. The gas flow in the porous electrodes is governed by the isotropic linear resistance model with constant porosity and permeability. The diffusions of reactant species in the porous electrodes are described by the Stefan-Maxwell relation. Effective diffusivities for porous layers follow the Bruggman model. Porous electrochemistry is depicted via surface reactions with a constant surface-to-volume ratio, tortuosity, and average pore size. Results of the cathode-supported cell and the anode-supported cell are obtained, discussed, and compared thereafter for the first time.

1.
Achenbach
,
E.
, and
Reus
,
U.
, 1999, “
The Effect of Mass-Flow Distribution on the Characteristics of a Solid Oxide Fuel Cell System
,”
6th Int. Symp. Solid Oxide Fuel Cells (SOFC VI)
, Hawaii.
2.
Yuan
,
J.
,
Rokni
,
M.
, and
Sunden
,
B.
, 1999, “
The Development of Heat Transfer and Gas Flow Modeling in the Solid Oxide Fuel Cells
,”
6th Int. Symp. Solid Oxide Fuel Cells (SOFC-VI)
, Hawaii.
3.
Hartvigsen
,
J.
,
Khandkar
,
A.
,
Elangovan
,
S.
,
Rowley
,
D.
,
Privette
,
R.
, and
Tharp
,
M.
, 1999, “
Status and Progress in SOFCo’s Planar SOFC Development
,”
6th Int. Symp. Solid Oxide Fuel Cells (SOFC-VI)
, Hawaii.
4.
Yakabe
,
H.
,
Ogiwara
,
T.
,
Yasuda
,
I.
, and
Hishinuma
,
M.
, “
Model Calculation for Planar SOFC Focusing on Internal Stresses
,”
6th Int. Symp. Solid Oxide Fuel Cells (SOFC-VI)
, Hawaii.
5.
Khaleel
,
M. A.
,
Recknagle
,
K. P.
,
Lin
,
Z.
,
Deibler
,
J. E.
,
Chick
,
L. A.
, and
Stevenson
,
J. W.
, 2001 “
Thermomechanical and Electrochemistry Modeling of Planar SOFC Stacks
,”
7th Int. Symp. Solid Oxide Fuel Cells (SOFC-VII)
, Tsukuba, Japan.
6.
Hwang
,
J. J.
,
Chen
,
C. K.
, and
Lai
,
D. Y.
, 2005, “
Computational Analysis of Species Transport and Electrochemical Characteristics in an MOLB-type SOFC
,”
J. Power Sources
0378-7753,
140
, pp.
235
242
.
7.
Donelson
,
R.
,
Ratnaraj
,
R.
, and
Foger
,
K.
, 1999, “
Demonstration of Anode Supported Cell Technology in kW Class Stack
,”
6th Int. Symp. Solid Oxide Fuel Cells (SOFC-VI)
, Hawaii.
8.
Ackmann
,
T.
,
de Haart
,
L. G. J.
,
Lehnert
,
W.
, and
Stolten
,
D.
, 2003, “
Modeling of Mass and Heat Transport in Planar Substrate Type SOFCs
,”
J. Electrochem. Soc.
0013-4651,
150
, pp.
A783
A789
9.
Chung
,
B. W.
,
Pham
,
A. Q.
,
Haslam
,
J. J.
, and
Glass
,
R. S.
, 2002, “
Influence of Electrode Configuration on the Performance of Electrode-Supported Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
149
, pp.
A325
A330
.
10.
Hwang
,
J. J.
, and
Lai
,
D. Y.
, 2005, “
Detailed Characteristic Comparison Between Planar and MOLB-type SOFC
,”
J. Power Sources
0378-7753,
143
, pp.
75
83
.
11.
Fee
,
D. C.
,
Blackburn
,
P. E.
,
Busch
,
D. E.
,
Chaar
,
T. D.
,
Dees
,
D. W.
,
Dusek
,
J.
,
Easler
,
T. E.
,
Ellingson
,
W. A.
,
Flandermeyer
,
B. K.
,
Fousek
,
R. J.
,
Mrazek
,
F. C.
,
Picciolo
,
J. J.
,
Poeppel
,
R. B.
, and
Zwick
,
S. A.
, 1986, “
Monolithic Fuel Cell Development
,”
Fuel Cell Seminar
, Tuscon.
12.
Sakaki
,
Y.
,
Nakanyama
,
A.
,
Hottori
,
M.
,
Miyamoto
,
H.
,
Aiki
,
H.
, and
Kakenobu
,
K.
, 2001, “
Development of MOLB Type SOFC
,”
SOFC VII
,
The Electrochemical Society
, New York, pp.
72
77
.
13.
Costamagna
,
P.
, and
Honegger
,
K.
, 1998, “
Modeling of Solid Oxide Heat Exchanger Integrated Stacks and Simulation at High Fuel Utilization
,”
J. Electrochem. Soc.
0013-4651,
145
, pp.
3995
4006
.
14.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
, New York.
15.
Van Doormaal
,
J. P.
, and
Raithby
,
G. D.
, 1984, “
Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
0149-5720,
7
, pp.
147
163
.
16.
Hwang
,
J. J.
, and
Lai
,
D. Y.
, 1998, “
Three-Dimensional Mixed Convection in a Rotating Multiple-Pass Square Channel
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
979
991
.
17.
Hwang
,
J. J.
,
Chen
,
C. K.
,
Savinell
,
R. F.
,
Liu
,
C. C.
, and
Wainright
,
J.
, “
A Three-Dimensional Numerical Simulation of the Transport Phenomena in the Cathodic Side of a PEMFC
,”
J. Appl. Electrochem.
0021-891X,
34
, pp.
217
224
.
You do not currently have access to this content.