We present a transient model for an electrically segmented polymer electrolyte membrane (PEM) fuel cell which is run until extinction from a finite oxygen supply. The experimental cell is divided into 16 electrically isolated pucks which are fed oxygen from a small reserve and hydrogen from a conventional flow field. The experimental voltage and through-plane current in each puck, and puck-to-puck currents are recorded and compared to computed profiles. Seven qualitative characteristics of the current profiles during discharge are identified. These are used as targets for parameter tuning, from which puck-to-puck water distribution within the membrane electrode assembly (MEA) is inferred. The model is sensitive to system parameters, and holds promise as an in situ diagnostic tool for tracking this distribution by using MEA oxygen transport characteristics.

1.
Amphlett
,
J. C.
,
Mann
,
R. F.
,
Peppley
,
B. A.
,
Roberge
,
P. R.
, and
Rodrigues
,
A.
, 1996, “
A Model Predicting Transient Responses of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
61
, pp.
183
188
.
2.
Ceraolo
,
M.
,
Miulli
,
C.
, and
Pozio
,
A.
, 2003, “
Modelling Static and Dynamic Behaviour of Proton Exchange Membrane Fuel Cells on the Basis of Electrochemical Description
,”
J. Power Sources
0378-7753,
113
, pp.
131
144
.
3.
Pukrushpan
,
J. T.
,
Peng
,
H.
, and
Stefanopoulou
,
A. G.
, 2004, “
Control-Oriented Modeling and Analysis for Automotive Fuel Cell Systems
,”
J. Dyn. Syst., Meas., Control
0022-0434,
126
, pp.
14
25
.
4.
Berg
,
P.
,
Promislow
,
K.
,
St.-Pierre
,
J.
,
Stumper
,
J.
, and
Wetton
,
B.
, 2004, “
Water Management in PEM Fuel Cells
”,
J. Electrochem. Soc.
0013-4651,
151
,
A341
353
.
5.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1992, “
A Mathematical Study of Solid-Polymer-Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
139
, pp.
2477
2491
.
6.
Berning
,
T.
,
Lu
,
D. M.
, and
Djilali
,
N.
, 2002, “
Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell
,”
J. Power Sources
0378-7753,
106
, pp.
284
294
.
7.
Dutta
,
S.
,
Shimpalee
,
S.
, and
Van Zee
,
J. W.
, 2001, “
Numerical Prediction of Mass-Exchange between Cathode and Anode Channels in a PEM Fuel Cell
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
2029
2042
.
8.
Fuller
,
T. F.
, and
Newman
,
J.
, 1993, “
Water and Thermal Management in Solid-Polymer-Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
137
, pp.
1218
1225
.
9.
Gurau
,
V
,
Barbir
,
F.
, and
Liu
,
H.
, 2000, “
An Analytical Solution of a Half-Cell Model for PEM Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
147
, pp.
2468
2477
.
10.
Gurau
,
V.
,
Liu
,
H.
, and
Kakac
,
S.
, 1998, “
Two-Dimensional Model for Proton Exchange Membrane Fuel Cells
,”
AIChE J.
0001-1541,
44
, pp.
2410
2422
.
11.
Nguyen
,
T.
, and
White
,
R. E.
, 1993, “
A Water and Heat Management Model for Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
140
, pp.
2178
2186
.
12.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
138
, pp.
2334
2342
.
13.
Thampan
,
T.
,
Malhotra
,
S.
,
Tang
,
H.
, and
Datta
,
R.
, 2000, “
Modeling of Conductive Transport in Proton-Exchange Membranes for Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
147
, pp.
3242
3250
.
14.
Um
,
S.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2000, “
Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
147
, pp.
4485
4493
.
15.
Eikerling
,
M.
,
Kharkats
,
Y. I.
,
Kornyshev
,
A. A.
, and
Volfkovich
,
Y. M.
, 1998, “
Phenomenological Theory of Electro-Osmotic Effect and Water Management in Polymer Electrolyte Proton-Conducting Fuel Membranes
,”
J. Electrochem. Soc.
0013-4651,
145
, pp.
2684
2699
.
16.
Stumper
,
J.
, and
Granados
,
A.
, 2005, “
In Situ Determination of MEA Resistance and Electrode Diffusivity of a Fuel Cell
,” (in preparation).
17.
Opekar
,
F.
, and
Svozil
,
D.
, 1995, “
Electric Resistance in Nafion Membrane Exposed to Air After a Step Change in Relative Humidity
,”
J. Electroanal. Chem.
0022-0728,
385
, pp.
269
271
.
18.
Basura
,
V. I.
, 2000, “
Electrochemistry of Proton Exchange Membranes
,” PhD Thesis, Simon Fraser University, Burnaby, Canada.
19.
Zawodzinski
,
T.
,
Derouin
,
C.
,
Radzinski
,
S.
,
Sherman
,
R.
,
Smith
,
V.
,
Springer
,
T.
, and
Gottesfeld
,
S.
, 1993, “
A Comparative Study of Water Uptake By and Transport Through Ionomeric Fuel Cell Membranes
,”
J. Electrochem. Soc.
0013-4651,
140
, pp.
1041
1047
.
20.
Gerthsen
,
C.
,
Kneser
,
H.
, and
Vogel
,
H.
, 1992,
Physik
,
16th ed.
,
Heidelberg
, Springer.
21.
Fairbairn
,
L.
, 2003, “
The Coupled Liquid and Gas Transport in a PEM Fuel Cell Electrode
,” Master’s Thesis, Simon Fraser University, Burnaby, Canada.
22.
Promislow
,
K.
, and
Stockie
,
J.
, 2001, “
Adiabatic Relaxation of Convective-Diffusive Gas Transport in a Porous Fuel Cell Electrode
,”
SIAM J. Appl. Math.
0036-1399,
62
, pp.
180
205
.
23.
Promislow
,
K.
,
Stockie
,
J.
, and
Wetton
,
B.
, 2005, “
A Sharp Interface Reduction for Multiphase Flow in a Porous Fuel Cell Electrode
,” submitted to the Proceedings of the Royal Society of London A.
24.
Chang
,
P.
, 2002, “
Modelling Stack Flow in PEM Fuel Cells
,” Internal Communications.
You do not currently have access to this content.