Solid oxide fuel cells (SOFCs) are expected to be a future power source. Simulation analyses of SOFCs can help to understand well the interactive functions among the multiphysics phenomena in the SOFC system. A three-dimensional multiphysics finite-element model was used to simulate the performance of a half-cell SOFC with (Pr0.7Sr0.3)MnO3±δ8mol% yttria-stabilized zirconia (8YSZ) composite cathode on one side of the 8YSZ electrolyte before and after aging. Multiphysics phenomena in the SOFC were considered in the modeling. The current/voltage curves simulated matched the experimental data before and after aging. The average current density was found to have a linear relationship to the logarithm of the effective exchange current density. The effect of the effective ionic conductivity of the composite cathode was more apparent for small total effective ionic conductivity values than for large ones.

1.
Hoogers
,
G.
, 2003,
Fuel Cell Technology Handbook
,
1st ed.
,
CRC Press
, New York, p.
1
.
2.
Iwata
,
M.
,
Hikosaka
,
T.
,
Morita
,
M.
,
Iwanari
,
T.
,
Ito
,
K.
,
Onda
,
K.
,
Esaki
,
Y.
,
Sakaki
,
Y.
, and
Nagata
,
S.
, 2000, “
Performance Analysis of Planar-Type Unit SOFC Considering Current and Temperature Distributions
,”
Solid State Ionics
0167-2738,
132
, Nos.
3–4
, pp.
297
308
.
3.
Yakabe
,
H.
,
Hishinuma
,
M.
,
Uratani
,
M.
,
Matsuzaki
,
Y.
, and
Yasuda
,
I.
, 2000, “
Evaluation and Modeling of Performance of Anode-Supported Solid Oxide Fuel Cell
,”
J. Power Sources
0378-7753,
86
, Nos.
1–2
, pp.
423
431
.
4.
Yakabe
,
H.
,
Ogiwara
,
T.
,
Hishinuma
,
M.
, and
Yasuda
,
I.
, 2001, “
3-D Model Calculation for Planar SOFC
,”
J. Power Sources
0378-7753,
102
, Nos.
1–2
, pp.
144
154
.
5.
Milliken
,
C.
,
Guruswamy
,
S.
, and
Khandkar
,
A.
, 1999, “
Evaluation of Ceria Electrolytes in Solid Oxide Fuel Cells Electric Power Generation
,”
J. Electrochem. Soc.
0013-4651,
146
, No.
3
, pp.
872
882
.
6.
Nagata
,
S.
,
Momma
,
A.
,
Kato
,
T.
, and
Kasuga
,
Y.
, 2001, “
Numerical Analysis of Output Characteristics of Tubular SOFC with Internal Reformer
,”
J. Power Sources
0378-7753,
101
, No.
1
, pp.
60
71
.
7.
Achenbach
,
E.
, 1995, “
Response of a Solid Oxide Fuel Cell to Load Change
,”
J. Power Sources
0378-7753,
57
, Nos.
1–2
, pp.
105
109
.
8.
Shiratori
,
Y.
, and
Yamazaki
,
Y.
, 2003, “
Discharge Characteristics of Planar Stack Fuel Cells
,”
J. Power Sources
0378-7753,
114
, No.
1
, pp.
80
87
.
9.
Tanner
,
C. W.
, and
Virkar
,
A. V.
, 2003, “
A Simple Model for Interconnect Design of Planar Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
113
, No.
1
, pp.
44
56
.
10.
Recknagle
,
K. P.
,
Williford
,
R. E.
,
Chick
,
L. A.
,
Rector
,
D. R.
, and
Khaleel
,
M. A.
, 2003, “
Three-Dimensional Thermo-Fluid Electrochemical Modeling of Planar SOFC Stacks
,”
J. Power Sources
0378-7753,
113
, No.
1
, pp.
109
114
.
11.
Achenbach
,
E.
, 1994, “
Three-Dimensional and Time-Dependent Simulation of a Planar Solid Oxide Fuel Cell Stack
,”
J. Power Sources
0378-7753,
49
, Nos.
1–3
, pp.
333
348
.
12.
Fleig
,
J.
, and
Maier
,
J.
, 1996, “
Finite Element Calculations of Impedance Effects at Point Contacts
,”
Electrochim. Acta
0013-4686,
41
, Nos.
7–8
, pp.
1003
1009
.
13.
Chan
,
S. H.
,
Low
,
C. F.
, and
Ding
,
O. L.
, 2002, “
Energy and Exergy Analysis of Simple Solid-Oxide Fuel-Cell Power Systems
,”
J. Power Sources
0378-7753,
103
, No.
2
, pp.
188
200
.
14.
Chan
,
S. H.
,
Khor
,
K. A.
, and
Xia
,
Z. T.
, 2001, “
A Complete Polarization Model of a Solid Oxide Fuel Cell and Its Sensitivity to the Change of Cell Component Thickness
,”
J. Power Sources
0378-7753,
93
, Nos.
1–2
, pp.
130
140
.
15.
Costamagna
,
P.
,
Costa
,
P.
, and
Antonucci
,
V.
, 1998, “
Micro-Modelling of Solid Oxide Fuel Cell Electrodes
,”
Electrochim. Acta
0013-4686,
43
, Nos.
3–4
, pp.
375
394
.
16.
Ota
,
T.
,
Koyama
,
M.
,
Wen
,
C.-J.
,
Yamada
,
K.
, and
Takahashi
,
H.
, 2003, “
Object-Based Modeling of SOFC System: Dynamic Behavior of Micro-Tube SOFC
,”
J. Power Sources
0378-7753,
118
, Nos.
1–2
, pp.
430
439
.
17.
Herbstritt
,
D.
,
Weber
,
A.
, and
Ivers-Tiffee
,
E.
, 2001, “
Modelling and Dc-Polarisation of a Three Dimensional Electrode/Electrolyte Interface
,”
J. Eur. Ceram. Soc.
0955-2219,
21
, Nos.
10–11
, pp.
1813
1816
.
18.
Lehnert
,
W.
,
Meusinger
,
J.
, and
Thom
,
F.
, 2000, “
Modelling of Gas Transport Phenomena in SOFC Anodes
,”
J. Power Sources
0378-7753,
87
, Nos.
1–2
, pp.
57
63
.
19.
Sunde
,
S.
, 2000, “
Simulations of Composite Electrodes in Fuel Cells
,”
J. Electroceram.
1385-3449,
5
, No.
2
, pp.
153
182
.
20.
Wen
,
T.-L.
,
Tu
,
H.
,
Xu
,
Z.
, and
Yamamoto
,
O.
, 1999, “
A Study of (Pr,Nd,Sm)1−xSrxMnO3 Cathode Materials for Solid Oxide Fuel Cell
,”
Solid State Ionics
0167-2738,
121
, Nos.
1–4
, pp.
25
30
.
21.
Svensson
,
A. M.
,
Sunde
,
S.
, and
Nisancioglu
,
K.
, 1996, “
A Mathematical Model of the Porous SOFC Cathode
,”
Solid State Ionics
0167-2738,
86–88
, No.
2
, pp.
1211
1216
.
22.
Horita
,
T.
,
Yamaji
,
K.
,
Sakai
,
N.
,
Xiong
,
Y.
,
Kato
,
T.
,
Yokokawa
,
H.
, and
Kawada
,
T.
, 2002, “
Imaging of Oxygen Transport at SOFC Cathode/Electrolyte Interfaces by a Novel Technique
,”
J. Power Sources
0378-7753,
106
, Nos.
1–2
, pp.
224
230
.
23.
Virkar
,
A. V.
,
Chen
,
J.
,
Tanner
,
C. W.
, and
Kim
,
J.-W.
, 2000, “
The Role of Electrode Microstructure on Activation and Concentration Polarizations in Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
131
, Nos.
1–2
, pp.
189
198
.
24.
An
,
K.
, 2003, “
Mechanical Properties and Electrochemical Durability of Solid Oxide Fuel Cells
,” Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
25.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
, 2002,
Transport Phenomena
,
2nd ed
,
Wiley
, New York, Chap. 17.
26.
Bard
,
A. J.
, and
Faulkner
,
L. R.
, 2001,
Electrochemical Methods Fundamentals and Application
,
2nd ed.
,
Wiley
, New York, Chap. 3.
27.
FEMLAB, 2002,
Femlab User’s Guide and Introduction
,
COMSOL Inc
.
28.
FEMLAB, 2003,
Model Gallery: Solid Oxide Fuel Cell
, Femlab Tour CD, COMSOL Inc.
29.
Ivers-Tiffee
,
E.
, and
Weber
,
A.
, 2003, “
Electronic, Ionic and Mixed Type Conductors in Solid Oxide Fuel Cell
,” Achema, Frankfurt, Germany, pp.
1
8
.
30.
Rim
,
H.-R.
,
Jeung
,
S.-K.
,
Jung
,
E.
, and
Lee
,
J.-S.
, 1998, “
Characteristics of Pr1−xMxMnO3 (MCa,Sr) as Cathode Material in Solid Oxide Fuel Cells
,”
Mater. Chem. Phys.
0254-0584,
52
, pp.
54
59
.
31.
Sunde
,
S.
, 1997, “
Calculations of Impedance of Composite Anodes for Solid Oxide Fuel Cells
,”
Electrochim. Acta
0013-4686,
42
, No.
17
, pp.
2637
2648
.
32.
Dees
,
D. W.
,
Claar
,
T. D.
,
Easler
,
T. E.
,
Fee
,
D. C.
, and
Mrazek
,
F. C.
, 1987, “
Conductivity of Porous Ni∕ZrO2-Y2O3 Cermets
,”
J. Electrochem. Soc.
0013-4651,
134
, No.
9
, pp.
2141
2146
.
You do not currently have access to this content.