Abstract

Among several types of redox flow batteries (RFBs) under development, non-aqueous redox flow batteries (NRFBs) have the potential to approach the energy density of lithium-ion batteries, while maintaining the advantages of flow systems, including ability to decouple power and energy ratings, and thermal stability. Despite their promise, NRFBs suffer from low energy densities because the solubility limitation of redox species in non-aqueous solvents remains relatively lower compared to water. One promising concept for drastically improving the energy density of NRFBs is the utilization of solid charge storage materials, which are reversibly oxidized or reduced in the electrolyte tanks upon interaction with the redox active species (mediators) dissolved in electrolyte (i.e., redox-targeting flow battery (RTFB)). Herein, we demonstrate a RTFB using a highly stable, bio-inspired mediator, vanadium(IV/V)bis-hydroxyiminodiacetate (VBH), coupled with cobalt hexacyanoferrate (CoHCF) as the solid charge storage material. Based on the charge/discharge cycling experiments, the energy capacity was found to be enhanced by ∼5x when CoHCF pellets were added into the tank compared to the case without CoHCF. With the pellet approach, up to ∼70% of the theoretical capacity of CoHCF were utilized at 10 mA cm−2 current density. Sufficient evidence has indicated that this concept utilizing redox-targeting reactions makes it possible to surpass the solubility limitations of the active material, allowing for unprecedented improvements to the energy density of RFBs.

References

1.
Soloveichik
,
G. L.
,
2015
, “
Flow Batteries: Current Status and Trends
,”
Chem. Rev.
,
115
(
20
), pp.
11533
11558
.
2.
Gong
,
K.
,
Fang
,
Q.
,
Gu
,
S.
,
Li
,
S.
, and
Yan
,
Y.
,
2015
, “
Nonaqueous Redox-Flow Batteries: Organic Solvents, Supporting Electrolytes, and Redox Pairs
,”
Energy Environ. Sci.
,
8
(
12
), pp.
3515
3530
.
3.
Sánchez-Díez
,
E.
,
Ventosa
,
E.
,
Guarnieri
,
M.
,
Trovò
,
A.
,
Flox
,
C.
,
Marcilla
,
R.
,
Soavi
,
F.
,
Mazur
,
P.
,
Aranzabe
,
E.
, and
Ferret
,
R.
,
2021
, “
Redox Flow Batteries: Status and Perspective Towards Sustainable Stationary Energy Storage
,”
J. Power Sources
,
481
, p.
228804
.
4.
Weber
,
A. Z.
,
Mench
,
M. M.
,
Meyers
,
J. P.
,
Ross
,
P. N.
,
Gostick
,
J. T.
, and
Liu
,
Q.
,
2011
, “
Redox Flow Batteries: A Review
,”
J. Appl. Electrochem.
,
41
(
10
), pp.
1137
1164
.
5.
García-Salaberri
,
P. A.
,
Gokoglan
,
T. C.
,
Ibáñez
,
S. E.
,
Agar
,
E.
, and
Vera
,
M.
,
2020
, “
Modeling the Effect of Channel Tapering on the Pressure Drop and Flow Distribution Characteristics of Interdigitated Flow Fields in Redox Flow Batteries
,”
Processes
,
8
(
7
), p.
775
.
6.
Nourani
,
M.
,
Zackin
,
B. I.
,
Sabarirajan
,
D. C.
,
Taspinar
,
R.
,
Artyushkova
,
K.
,
Liu
,
F.
,
Zenyuk
,
I. V.
, and
Agar
,
E.
,
2019
, “
Impact of Corrosion Conditions on Carbon Paper Electrode Morphology and the Performance of a Vanadium Redox Flow Battery
,”
J. Electrochem. Soc.
,
166
(
2
), pp.
A353
A363
.
7.
Nourani
,
M.
,
Dennison
,
C. R.
,
Jin
,
X.
,
Liu
,
F.
, and
Agar
,
E.
,
2019
, “
Elucidating Faradaic Imbalance on Vanadium Redox Flow Battery Performance: Experimental Characterization
,”
J. Electrochem. Soc.
,
166
(
15
), pp.
A3844
A3851
.
8.
VanGelder
,
L. E.
, and
Matson
,
E.
,
2018
, “
Heterometal Functionalization Yields Improved Energy Density for Charge Carriers in Nonaqueous Redox Flow Batteries
,”
J. Mater. Chem. A
,
6
(
28
), pp.
13874
13882
.
9.
Leung
,
P.
,
Shah
,
A. A.
,
Sanz
,
L.
,
Flox
,
C.
,
Morante
,
J. R.
,
Xu
,
Q.
,
Mohamed
,
M. R.
,
Ponce de Leoń
,
C.
, and
Walsh
,
F. C.
,
2017
, “
Recent Developments in Organic Redox Flow Batteries: A Critical Review
,”
J. Power Sources
,
360
, pp.
243
283
.
10.
Wei
,
X.
,
Pan
,
W.
,
Duan
,
W.
,
Hollas
,
A.
,
Yang
,
Z.
,
Li
,
B.
,
Nie
,
Z.
, et al
,
2017
, “
Materials and Systems for Organic Redox Flow Batteries: Status and Challenges
,”
ACS Energy Lett.
,
2
(
9
), pp.
2187
2204
.
11.
Gokoglan
,
T. C.
,
Pahari
,
S. K.
,
Hamel
,
A.
,
Howland
,
R.
,
Cappillino
,
P. J.
, and
Agar
,
E.
,
2019
, “
Operando Spectroelectrochemical Characterization of a Highly Stable Bioinspired Redox Flow Battery Active Material
,”
J. Electrochem. Soc.
,
166
(
10
), pp.
A1745
A1751
.
12.
Vijayakumar
,
M.
,
Wei
,
W.
,
Zimin
,
N.
,
Sprenkle
,
V.
, and
JianZhi
,
H.
,
2013
, “
Elucidating the Higher Stability of Vanadium (V) Cations in Mixed Acid Based Redox Flow Battery Electrolytes
,”
J. Power Sources
,
241
, pp.
173
177
.
13.
Wen
,
Y. H.
,
Xu
,
Y.
,
Cheng
,
J.
,
Cao
,
G. P.
, and
Yang
,
Y. S.
,
2013
, “
Investigation on the Stability of Electrolyte in Vanadium Flow Batteries
,”
Electrochim. Acta
,
96
, pp.
268
273
.
14.
Wu
,
X. W.
,
Liu
,
J.
,
Xiang
,
X. J.
,
Zhang
,
J.
,
Hu
,
J. P.
, and
Wu
,
Y. P.
,
2014
, “
Electrolytes for Vanadium Redox Flow Batteries
,”
Pure Appl. Chem.
,
86
(
5
), pp.
661
669
.
15.
Zhang
,
J.
,
Li
,
L.
,
Nie
,
Z.
,
Chen
,
B.
,
Vijayakumar
,
M.
,
Kim
,
S.
,
Wang
,
W.
,
Schwenzer
,
B.
,
Liu
,
J.
, and
Yang
,
Z.
,
2011
, “
Effects of Additives on the Stability of Electrolytes for All-Vanadium Redox Flow Batteries
,”
J. Appl. Electrochem.
,
41
(
10
), pp.
1215
1221
.
16.
Wang
,
G.
,
Chen
,
J.
,
Wang
,
X.
,
Tian
,
J.
,
Kang
,
H.
,
Zhu
,
X.
,
Zhang
,
Y.
,
Liu
,
X.
, and
Wang
,
R.
,
2013
, “
Influence of Several Additives on Stability and Electrochemical Behavior of V (V) Electrolyte for Vanadium Redox Flow Battery
,”
J. Electroanal. Chem.
,
709
, pp.
31
38
.
17.
Wang
,
G.
,
Chen
,
J.
,
Wang
,
X.
,
Tian
,
J.
,
Kang
,
H.
,
Zhu
,
X.
,
Zhang
,
Y.
,
Liu
,
X.
, and
Wang
,
R.
,
2014
, “
Study on Stabilities and Electrochemical Behavior of V (V) Electrolyte With Acid Additives for Vanadium Redox Flow Battery
,”
J. Energy Chem.
,
23
(
1
), pp.
73
81
.
18.
Lei
,
Y.
,
Liu
,
S.-Q.
,
Gao
,
C.
,
Liang
,
X.-X.
,
He
,
Z.-X.
,
Deng
,
Y.-H.
, and
He
,
Z.
,
2013
, “
Effect of Amino Acid Additives on the Positive Electrolyte of Vanadium Redox Flow Batteries
,”
J. Electrochem. Soc.
,
160
(
4
), pp.
A722
A727
.
19.
Piernas
,
M. J.
, and
Martínez
,
E. C.
,
2018
, “Chapter 2: Prussian Blue and Its Analogues. Structure, Characterization and Applications,”
Prussian Blue Based Batteries
,
Springer
, pp.
9
22
.
20.
Attanayake
,
N. H.
,
Kowalski
,
J. A.
,
Greco
,
K. V.
,
Casselman
,
M. D.
,
Milshtein
,
J. D.
,
Chapman
,
S. J.
,
Parkin
,
S. R.
,
Brushett
,
F. R.
, and
Odom
,
S. A.
,
2019
, “
Tailoring Two-Electron-Donating Phenothiazines to Enable High Concentration Redox Electrolytes for Use in Nonaqueous Redox Flow Batteries
,”
Chem. Mater.
,
31
(
12
), pp.
4353
4363
.
21.
Saraidaridis
,
J. D.
, and
Monroe
,
C. W.
,
2019
, “
Nonaqueous Vanadium Disproportionation Flow Batteries With Porous Separators Cycle Stably and Tolerate High Current Density
,”
J. Power Sources
,
412
, pp.
384
390
.
22.
Cappillino
,
P. J.
,
Pratt
,
H. D.
,
Hudak
,
N. S.
,
Tomson
,
N. C.
,
Anderson
,
T. M.
, and
Anstey
,
M. R.
,
2014
, “
Application of Redox Non-Innocent Ligands to Non-Aqueous Flow Battery Electrolytes
,”
Adv. Energy Mater.
,
4
(
1
), p.
1300566
.
23.
Sevov
,
C. S.
,
Hickey
,
D. P.
,
Cook
,
M. E.
,
Robinson
,
S. G.
,
Barnett
,
S.
,
Minteer
,
S. D.
,
Sigman
,
M. S.
, and
Sanford
,
M. S.
,
2017
, “
Physical Organic Approach to Persistent, Cyclable, Low-Potential Electrolytes for Flow Battery Applications
,”
J. Am. Chem. Soc.
,
139
(
8
), pp.
2924
2927
.
24.
Kucharyson
,
J. F.
,
Cheng
,
L.
,
Tung
,
S. O.
,
Curtiss
,
L. A.
, and
Thompson
,
L. T.
,
2017
, “
Predicting the Potentials, Solubilities and Stabilities of Metal-Acetylacetonates for Non-Aqueous Redox Flow Batteries Using Density Functional Theory Calculations
,”
J. Mater. Chem. A
,
5
(
26
), pp.
13700
13709
.
25.
Zhao
,
Y.
,
Zhang
,
J.
,
Agarwal
,
G.
,
Yu
,
Z.
,
Corman
,
R. E.
,
Wang
,
Y.
,
Robertson
,
L. A.
, et al
,
2021
, “
TEMPO Allegro: Liquid Catholyte Redoxmers for Nonaqueous Redox Flow Batteries
,”
J. Mater. Chem. A
,
9
(
31
), pp.
16769
16775
.
26.
Attanayake
,
N. H.
,
Suduwella
,
T. M.
,
Yan
,
Y.
,
Kaur
,
A. P.
,
Liang
,
Z.
,
Sanford
,
M. S.
, and
Odom
,
S. A.
,
2021
, “
Comparative Study of Organic Radical Cation Stability and Columbic Efficiency for Nonaqueous Redox Flow Battery Applications
,”
J. Phys. Chem. C
,
125
(
26
), pp.
14170
14179
.
27.
Liu
,
B.
,
Tang
,
C. W.
,
Zhang
,
C.
,
Jia
,
G.
, and
Zhao
,
T.
,
2021
, “
Cost-Effective, High-Energy-Density, Nonaqueous Nitrobenzene Organic Redox Flow Battery
,”
Chem. Mater.
,
33
(
3
), pp.
978
986
.
28.
Visayas
,
B. R. B.
,
Pahari
,
S. K.
,
Gokoglan
,
T. C.
,
Golen
,
J. A.
,
Agar
,
E.
,
Cappillino
,
P. J.
, and
Mayes
,
M. L.
,
2021
, “
Computational and Experimental Investigation of the Effect of Cation Structure on the Solubility of Anionic Flow Battery Active-Materials
,”
Chem. Sci.
,
12
(
48
), pp.
15892
15907
.
29.
Shkrob
,
I. A.
,
Robertson
,
L. A.
,
Yu
,
Z.
,
Assary
,
R. S.
,
Cheng
,
L.
,
Zhang
,
L.
,
Sarnello
,
E.
, et al
,
2021
, “
Crowded Electrolytes Containing Redoxmers in Different States of Charge: Solution Structure, Properties, and Fundamental Limits on Energy Density
,”
J. Mol. Liq.
,
334
, p.
116533
.
30.
Barton
,
J. L.
,
Milshtein
,
J. D.
,
Hinricher
,
J. J.
, and
Brushett
,
F. R.
,
2018
, “
Quantifying the Impact of Viscosity on Mass-Transfer Coefficients in Redox Flow Batteries
,”
J. Power Sources
,
399
, pp.
133
143
.
31.
Huang
,
Q.
,
Li
,
H.
,
Grätzel
,
M.
, and
Wang
,
Q.
,
2013
, “
Reversible Chemical Delithiation/Lithiation of LiFePO4: Towards a Redox Flow Lithium-Ion Battery
,”
Phys. Chem. Chem. Phys.
,
15
(
6
), pp.
1793
1797
.
32.
Huang
,
Q.
,
Yang
,
J.
,
Ng
,
C.
,
Jia
,
C.
, and
Wang
,
Q.
,
2016
, “
A Redox Flow Lithium Battery Based on the Redox Targeting Reactions Between LiFePO4 and Iodide
,”
Energy Environ. Sci.
,
9
(
3
), pp.
917
921
.
33.
Jia
,
C.
,
Pan
,
F.
,
Zhu
,
Y.
,
Huang
,
Q.
,
Lu
,
L.
, and
Wang
,
Q.
,
2015
, “
High-Energy Density Nonaqueous All Redox Flow Lithium Battery Enabled With a Polymeric Membrane
,”
Sci. Adv.
,
1
(
10
), p.
e1500886
.
34.
Jennings
,
J. R.
,
Huang
,
Q.
, and
Wang
,
Q.
,
2015
, “
Kinetics of LixFePO4 Lithiation/Delithiation by Ferrocene-Based Redox Mediators: An Electrochemical Approach
,”
J. Phys. Chem. C
,
119
(
31
), pp.
17522
17528
.
35.
Gentil
,
S.
,
Reynard
,
D.
, and
Girault
,
H.
,
2020
, “
Aqueous Organic and Redox-Mediated Redox Flow Batteries: A Review
,”
Curr. Opin. Electrochem.
,
21
, pp.
7
13.
36.
Yan
,
R.
, and
Wang
,
Q.
,
2018
, “
Redox-Targeting-Based Flow Batteries for Large-Scale Energy Storage
,”
Adv. Mater.
,
30
(
47
), p.
1802406
.
37.
Moghaddam
,
M.
,
Sepp
,
S.
,
Wiberg
,
C.
,
Bertei
,
A.
,
Rucci
,
A.
, and
Peljo
,
P.
,
2021
, “
Thermodynamics, Charge Transfer and Practical Considerations of Solid Boosters in Redox Flow Batteries
,”
Molecules
,
26
(
8
), p.
2111
.
38.
Wang
,
X.
,
Zhou
,
M.
,
Zhang
,
F.
,
Zhang
,
H.
, and
Wang
,
Q.
,
2021
, “
Redox Targeting of Energy Materials
,”
Curr. Opin. Electrochem.
,
29
, p.
100743
.
39.
Zhou
,
M.
,
Huang
,
Q.
,
Truong
,
T. N. P.
,
Ghilane
,
J.
,
Zhu
,
Y. G.
,
Jia
,
C.
,
Yan
,
R.
,
Fan
,
L.
,
Randriamahazaka
,
H.
, and
Wang
,
Q.
,
2017
, “
Nernstian-Potential-Driven Redox-Targeting Reactions of Battery
,”
Chem
,
3
(
6
), pp.
1036
1049
.
40.
Yu
,
J.
,
Fan
,
L.
,
Yan
,
R.
,
Zhou
,
M.
, and
Wang
,
Q.
,
2018
, “
A Redox Targeting-Based Aqueous Redox Flow Lithium Battery
,”
ACS Energy Lett.
,
3
(
10
), pp.
2314
2320
.
41.
Zhu
,
Y. G.
,
Du
,
Y.
,
Jia
,
C.
,
Zhou
,
M.
,
Fan
,
L.
,
Wang
,
X.
, and
Wang
,
Q.
,
2017
, “
Unleashing the Power and Energy of LiFePO4-Based Redox Flow Lithium Battery With a Bifunctional Redox Mediator
,”
J. Am. Chem. Soc.
,
139
(
18
), pp.
6286
6289
.
42.
Pan
,
F.
,
Huang
,
Q.
,
Huang
,
H.
, and
Wang
,
Q.
,
2016
, “
High-Energy Density Redox Flow Lithium Battery With Unprecedented Voltage Efficiency
,”
Chem. Mater.
,
28
(
7
), pp.
2052
2057
.
43.
Li
,
J.
,
Yang
,
L.
,
Yang
,
S.
, and
Lee
,
J. Y.
,
2015
, “
The Application of Redox Targeting Principles to the Design of Rechargeable Li–S Flow Batteries
,”
Adv. Energy Mater.
,
5
(
24
), p.
1501808
.
44.
Zhu
,
Y. G.
,
Jia
,
C.
,
Yang
,
J.
,
Pan
,
F.
,
Huang
,
Q.
, and
Wang
,
Q.
,
2015
, “
Dual Redox Catalysts for Oxygen Reduction and Evolution Reactions: Towards a Redox Flow Li–O2 Battery
,”
Chem. Commun.
,
51
(
46
), pp.
9451
9454
.
45.
Zhu
,
Y. G.
,
Wang
,
X.
,
Jia
,
C.
,
Yang
,
J.
, and
Wang
,
Q.
,
2016
, “
Redox-Mediated ORR and OER Reactions: Redox Flow Lithium Oxygen Batteries Enable With a Pair of Soluble Redox Catalysts
,”
ACS Catal.
,
6
(
9
), pp.
6191
6197
.
46.
Zanzola
,
E.
,
Dennison
,
C. R.
,
Battistel
,
A.
,
Peljo
,
P.
,
Vrubel
,
H.
,
Amstutz
,
V.
, and
Girault
,
H. H.
,
2017
, “
Redox Solid Energy Boosters for Flow Batteries: Polyaniline as a Case Study
,”
Electrochim. Acta
,
235
, pp.
664
671
.
47.
Zanzola
,
E.
,
Gentil
,
S.
,
Gschwend
,
G.
,
Reynard
,
D.
,
Smirnov
,
E.
,
Dennison
,
C. R.
,
Girault
,
H. H.
, and
Peljo
,
P.
,
2019
, “
Solid Electrochemical Energy Storage for Aqueous Redox Flow Batteries: The Case of Copper Hexacyanoferrate
,”
Electrochim. Acta
,
321
, p.
134704
.
48.
Zhou
,
M.
,
Chen
,
Y.
,
Salla
,
M.
,
Zhang
,
H.
,
Wang
,
X.
,
Mothe
,
S. R.
, and
Wang
,
Q.
,
2020
, “
Single-Molecule Redox-Targeting Reactions for a pH-Neutral Aqueous Organic Redox Flow Battery
,”
Angew. Chem. Int. Ed.
,
59
(
34
), pp.
14286
14291
.
49.
Cheng
,
Y.
,
Wang
,
X.
,
Huang
,
S.
,
Samarakoon
,
W.
,
Xi
,
S.
,
Ji
,
Y.
,
Zhang
,
H.
, et al
,
2019
, “
Redox Targeting-Based Vanadium Redox-Flow Battery
,”
ACS Energy Lett.
,
4
(
12
), pp.
3028
3035
.
50.
Wong
,
C. M.
, and
Sevov
,
C. S.
,
2021
, “
All-Organic Storage Solids and Redox Shuttles for Redox-Targeting Flow Batteries
,”
ACS Energy Lett.
,
6
, pp.
1271
1279
.
51.
Huang
,
H.
,
Howland
,
R.
,
Agar
,
E.
,
Nourani
,
M.
,
Golden
,
J. A.
, and
Cappillino
,
P. J.
,
2017
, “
Bioinspired, High-Stability, Nonaqueous Redox Flow Battery Electrolytes
,”
J. Mater. Chem. A
,
5
(
23
), pp.
11586
11591
.
52.
Pahari
,
S. K.
,
Gokoglan
,
T. C.
,
Visayas
,
B. R. B.
,
Woehl
,
J.
,
Golen
,
J. A.
,
Howland
,
R.
,
Mayes
,
M. L.
,
Agar
,
E.
, and
Cappillino
,
P. J.
,
2021
, “
Designing High Energy Density Flow Batteries by Tuning Active-Material Thermodynamics
,”
RSC Adv.
,
11
(
10
), pp.
5432
5443
.
53.
Bayer
,
E.
,
Koch
,
E.
, and
Anderegg
,
G.
,
1987
, “
Amavadin, an Example for Selective Binding of Vanadium in Nature: Studies of Its Complexation Chemistry and a New Structural Proposal
,”
Angew. Chem. Int. Ed.
,
26
(
6
), pp.
545
546
.
54.
Wang
,
B.
,
Han
,
Y.
,
Wang
,
X.
,
Bahlawane
,
N.
,
Pan
,
H.
,
Yan
,
M.
, and
Jiang
,
Y.
,
2018
, “
Prussian Blue Analogs for Rechargeable Batteries
,”
iScience
,
3
, pp.
110
133
.
55.
Zhao
,
F.
,
Wang
,
Y.
,
Xu
,
X.
,
Liu
,
Y.
,
Song
,
R.
,
Lu
,
G.
, and
Li
,
Y.
,
2014
, “
Cobalt Hexacyanoferrate Nanoparticles as a High-Rate and Ultra-Stable Supercapacitor Electrode Material
,”
ACS Appl. Mater. Interfaces
,
6
(
14
), pp.
11007
11012
.
56.
Potash
,
R. A.
,
McKone
,
J. R.
,
Conte
,
S.
, and
Abruña
,
H. D.
,
2015
, “
On the Benefits of a Symmetric Redox Flow Battery
,”
J. Electrochem. Soc.
,
163
(
3
), pp.
A338
A344
.
57.
Sinha
,
S.
,
Humphrey
,
B. D.
, and
Bocarsly
,
A. B.
,
1983
, “
Reaction of Nickel Electrode Surfaces With Anionic Metal-Cyanide Complexes: Formation of Precipitated Surfaces
,”
Inorg. Chem.
,
23
(
2
), pp.
203
212
.
58.
Sato
,
O.
,
Einaga
,
Y.
,
Iyoda
,
T.
,
Fujishima
,
A.
, and
Hashimoto
,
K.
,
1997
, “
Cation-Driven Electron Transfer Involving a Spin Transition at Room Temperature in a Cobalt Iron Cyanide Thin Film
,”
J. Phys. Chem. B
,
101
(
20
), pp.
3903
3905
.
59.
Lezna
,
R. O.
,
Romagnoli
,
R.
,
de Tocconi
,
N. R.
, and
Rajeshwar
,
K.
,
2002
, “
Cobalt Hexacyanoferrate: Compound Stoichiometry, Infrared Spectroelectrochemistry, and Photoinduced Electron Transfer
,”
J. Phys. Chem. B
,
106
(
14
), pp.
3612
3621
.
You do not currently have access to this content.